
MI 9838

Manual for Communicating to the USB port of the cutters of
Summa with the OS X operating system or Linux.

Manual Revision History
June 2003 Original Issue.
Feb 2008-02-26 Additon of summa USB port 2,3 and 4

MI 9838

Introduction

This document describes a way to communicate to the USB port on OSX. This has only been
tested at Summa with OS X 10.1. As we are no Macintosh specialists, we only provide some
guidelines and information.

Summa does not provide any USB driver, the communication with the USB port takes place
at user level, not at kernel level.

You should first read the document “Working with USB Device Interfaces” that can be found
at http://developer.apple.com.

You should also download the USB SDK for OSX found at http://developer.apple.com. This SDK
provides some sample code that can easily be adapted for the cutters.

The rest of this document gives some details about the implementation of the USB protocol
on the cutters from Summa and gives some details on how to adapt the sample code from
Apple.

http://developer.apple.com/
http://developer.apple.com/

MI 9838

USB implementation for Summa Cutters

• The cutter does not belong to any class, so the Composite driver described on page 9 of

“working with USB device interfaces”, will not be used by OSX. This means that you will
have to select a configuration in order to communicate with the USB port.

• The cutter has only one USB configuration and one USB interface. The USB interface

has several pipes. The driver should only work over 3 interrupted pipes (PIPE00 and
PIPE01 and PIPE02).

• Now Follows a dump of the configuration of the USB port on the cutters from Summa (the

bold text contains useful information)

NOTE : throughout this document the pipes are numbered from 0 to 3 (
Zero based indexing) but apple uses 0 as index for the “control pipe”
and the rest of the pipes are 1 based indexing. So PIEP00 will have index
1 when dealing with pipes in the Mac software!

Device Descriptor:
===========================
bcdUSB: 0x0100
bDeviceClass: 0xFF
bDeviceSubClass: 0x00
bDeviceProtocol: 0x00
bMaxPacketSize0: 0x10 (16)
idVendor: 0x099F
idProduct: 0x0100
bcdDevice: 0x0100
iManufacturer: 0x00
iProduct: 0x00
iSerialNumber: 0x00
bNumConfigurations: 0x01

USB_CONFIGURATION_DESCRIPTOR
==============================
bLength = 0xa, decimal 10
bDescriptorType = 0x2 (USB_CONFIGURATION_DESCRIPTOR_TYPE)
wTotalLength = 0x34, decimal 52
bNumInterfaces = 0x1, decimal 1
bConfigurationValue = 0x1, decimal 1
iConfiguration = 0x0, decimal 0
bmAttributes = 0x60 (USB_CONFIG_SELF_POWERED)
MaxPower = 0x1, decimal 1

USB_INTERFACE_DESCRIPTOR #0
============================
bLength = 0xa
bDescriptorType = 0x4 (USB_INTERFACE_DESCRIPTOR_TYPE)
bInterfaceNumber = 0x0
bAlternateSetting = 0x0
bNumEndpoints = 0x4
bInterfaceClass = 0xff
bInterfaceSubClass = 0x0
bInterfaceProtocol = 0x0
bInterface = 0x0

MI 9838

USB_ENDPOINT_DESCRIPTOR for Pipe00
===============================
bLength = 0x8
bDescriptorType = 0x5 (USB_ENDPOINT_DESCRIPTOR_TYPE)
bEndpointAddress= 0x81 (INPUT)
bmAttributes= 0x3 (USB_ENDPOINT_TYPE_INTERRUPT)
wMaxPacketSize= 0x10, decimal 16
bInterval = 0x2, decimal 2

USB_ENDPOINT_DESCRIPTOR for Pipe01
===============================
bLength = 0x8
bDescriptorType = 0x5 (USB_ENDPOINT_DESCRIPTOR_TYPE)
bEndpointAddress= 0x1 (OUTPUT)
bmAttributes= 0x3 (USB_ENDPOINT_TYPE_INTERRUPT)
wMaxPacketSize= 0x10, decimal 16
bInterval = 0x2, decimal 2

USB_ENDPOINT_DESCRIPTOR for Pipe02
================================
bLength = 0x8
bDescriptorType = 0x5 (USB_ENDPOINT_DESCRIPTOR_TYPE)
bEndpointAddress= 0x82 (INPUT)
bmAttributes= 0x2 (USB_ENDPOINT_TYPE_INTERRUPT)
wMaxPacketSize= 0x10, decimal 16
bInterval = 0x2, decimal 2

USB_ENDPOINT_DESCRIPTOR for Pipe03
===============================
bLength = 0x8
bDescriptorType = 0x5 (USB_ENDPOINT_DESCRIPTOR_TYPE)
bEndpointAddress= 0x2 (OUTPUT)
bmAttributes= 0x2 (USB_ENDPOINT_TYPE_BULK)
wMaxPacketSize= 0x10, decimal 16
bInterval = 0xa, decimal 10

Each USB device (in our case the cutter) communicates to the host software (= software on
Pc or Mac) through what are called pipes. The cutter has several pipes implemented. This
means that there are several communications channels between the cutter and the host
software.
The first one is called the Default Control Pipe, the operating software uses this pipe for plug
and play. This pipe is used to get information about the USB configuration of the cutter.

PIPE01 is a unidirectional pipe that transports data from the host computer to the cutter.
This data is the cut data (DM/PL or HP-GL).
PIPE00 is also unidirectional and carries information from the cutter to the host. For
example you can poll the size of the media through this pipe (in DM/PL for example).
As an example to get the paper size of the cutter (in DM/PL) you will have to send ‘ ;: ER ’ on
PIPE01 and you will have to read the response on PIPE00.
The third pipe has been called PIPE02. Reading from this pipe returns the free space in the
internal buffer of the cutter. This pipe is used to implement a software handshake method.

MI 9838

Summa uses interrupt pipes and not bulk pipes for the communication. Interrupt pipes does
not mean that you need an interrupt to transfer the data.

• Writing Data To Cutter.

You must send the data in little packets (e.g. 256 bytes). This gives much better
performance.

When the data is split in packets of 256 bytes, the last packet will probably be
smaller than 256 bytes. This is no problem. However make the last packet a
multiple of 32 by padding the data with zero’s.

• Reading Data From Cutter
The “timeout” principle doesn’t exists on the USB bus, at least not in the same way
as in the serial port. So when querying info from the cutter, you normally first send
data on PIPE01 and then read data on PIPE00. The cutter needs some time to put
data on the USB bus after receiving the request. While the data is not ready the
cutter will respond to any query with a zero length packet. This means the
ReadPipe() function will return with 0 bytes read. You will have to call ReadPipe()
until you get the desired response from the cutter. So when getting an answer from
the cutter of zero bytes or less than expected does not mean that no data is
available anymore. The cutter needs some time to put the data in its output buffer.

Reading data must be done by multiples of 16.

• Handshaking:
On Mac OS 9, there was a hardware handshake problem, maybe this is solved on
some versions of OSX? However I advise to implement software handshaking.
This is done by first checking if there is enough space in the buffer of the cutter
(just read the data on PIPE02). If this value is high enough then send data to
PIPE01.

• Differences for Summa USB port 2,3 and 4:
Each cutter can be setup to 4 different port numbers, Summa USB port 1 is the
standard port, the descriptor of this port is included in this document (zee above).
The other ports differ only in the idProduct of the device descriptor. These are: :

For SUMMAUSB PORT 1 : 0x100

For SUMMAUSB PORT 2 : 0x102

For SUMMAUSB PORT 3 : 0x103

For SUMMAUSB PORT 4 : 0x104

MI 9838

• Adapting the sample code from the SDK to communicate
with the cutter.

The easiest way to quickly test communication with the USB port is by adapting the sample
code that is provided in the USB SDK by apple. The sample code to start from can be found
in the folder : Developper/examples/Iokit/usb/USBSimpleExample.

I did adapt the following lines in order to send some data to the cutter.

1. In the function TransferData replace the lines

for(I=0;I<12;I++)
 outBuf[I] = ‘R’;
err = (*intf)->WritePipeAsync(intf,OutpipeRef,outbuf,12,…);

 with
sprintf(outBuf,”;: A D 100,100 U 0,0 Z”);
err = (*intf)->WritePipeAsync(intf,OutpipeRef,outbuf,strlen(outBuf),…);

2. In the function dealWithPipes remove the lines

If(transferType != kUSBBulk)
{
 printf(…);
}

 and change the lines:
// if(inPipeRef && outPiperef)
//transferData(intf, inPipeRef,outPipeRef);

 with
if(inPipeRef && outPiperef)
transferData(intf, inPipeRef,2);

3. in the function main replace the lines

Sint32 idVendor = 1351;
Sint32 idProduct = 8193;

 with
Sint32 idVendor = 0x099F;
Sint32 idProduct = 0x0100;

	Manual for Communicating to the USB port of the cutters of Summa with the OS X operating system or Linux.
	Manual Revision History

	Introduction
	USB implementation for Summa Cutters
	 Adapting the sample code from the SDK to communicate with the cutter.

