

F-SERIES Flatbed SDK

Revision: 06/18
Pdf creation date: 27 juni 2018

Revision History

Dec 2010: Original Issue.
Feb 2011: Added Foil Cut.
Feb 2011: Added Wii Remote.
May 2012: Added tools
June 2012: Removed Foil Cut added Z position (updated subset according to supported commands in

firmware revision 008 – current version)
March 2015 removed DMPL support.
June 2018 added two new commands for miller removed detailed explanation of OXF format.

Notice

Summa reserves the right to modify the information contained in this document at any time without
prior notice. Unauthorized copying, modification, distribution or display is prohibited. All rights reserved.
Please address all questions, comments or suggestions concerning this manual.

Summa
Rochesterlaan 6
B-8470 Gistel
Belgium

Copyright © Summa
All names and trademarks are the property of their owners.

Summa Cutters programmer's guide

1

Table of Contents

1 Introduction ... 2

2 Writing a Native driver ... 4

2.1 HP-GL Language Basics... 5
2.1.1 IN; Initialize Command ... 5
2.1.2 BP; Begin Plot Command (only HP–GL/2) ... 5
2.1.3 PA; Absolute Addressing Command ... 5
2.1.4 PR; Relative Addressing Command ... 5
2.1.5 PD x,y; Vector Down Command.. 5
2.1.6 PU x,y; Vector Up Command .. 5
2.1.7 SP tool, [slot_number]; Tool Select Command .. 6
2.1.8 SQ tool; Tool check Command .. 7
2.1.9 VS n; Velocity Command .. 7
2.1.10 RP n; router rotation speed Command ... 7
2.1.11 BC; Bit change command Command .. 7
2.1.12 ZP n,m; Z axis position Command .. 7
2.1.13 OH; Output Hardclip Command ... 7
2.1.14 OA; Output Actual Position .. 7
2.1.15 FF; Feed Command and FLx; command .. 8
2.1.16 PB Vacuum control .. 9
2.1.17 PS Vacuum direction. .. 9
2.1.18 ZT0; Park heads ... 9
2.1.19 AUbeta; define lifting angle ... 9
2.1.20 OVn; Overcut distance ... 9
2.1.21 LMn; Local move commands .. 9
2.1.22 MStext MESSAGE .. 10
2.1.23 Sample HP-GL File .. 10

2.2 Encapsulated Language ... 11

2.3 Contour Cutting ... 11
2.3.1 Mark recognition using Custom software. ... 11
2.3.2 Mark recognition using SummaFlex Pro. .. 11

2.4 USB ... 12
2.4.1 Introduction. .. 12
2.4.2 USB and Windows .. 12
2.4.3 USB Pipes... 12
2.4.4 Win32 Software Components ... 13
2.4.5 SummaUsb.sys .. 14
2.4.6 SummaUsb.dll ... 14
2.4.7 Win32 Host Application ... 15
2.4.8 Plug And Play Considerations ... 15
2.4.9 Summary ... 16
2.4.10 Win32 Sample Application ... 16
2.4.11 Handshake Sample .. 21

2.5 Wii Remote .. 24

3 The OXF format .. 25

Summa Cutters programmer's guide

2

1 Introduction
The information contained in this package is designed to allow technically competent people to
develop software and drivers compatible with the F series flatbed cutters.

They are 2 options to drive the machine:

1. Write a native driver which communicates directly to the machine via the USB port. If contour

cutting is needed, then mark recognition and compensation for contour cutting must also be
written, a USB camera supporting MS DirectShow is installed on the machine, this camera is for
the moment only compatible with Microsoft Windows.

2. Write a driver that creates files which can be imported by SummaFlex Pro. This is a commercial
digital finishing application sold by Summa, it is a special version of OptiSCOUT. This version
supports the OXF format written by Eurosystems. It also supports other formats such as pdf, eps,
ai, dxf… SummaFlex Pro supports mark recognition and compensation for contour cutting as
well as other advanced workflow features. The OXF format is described at the end of this
document.

The F series flatbed cutter has following features:

• 3 slots on the cutting head where different kind of tools can be mounted. The tools are for

example, cut out knifes, kiss cutting knifes, creasing wheels, router, oscillating knife, pen. These
tools can be used for various media: flexible roll media or rigid materials.

• A camera used for mark recognition. If contour cutting is required, then some registration marks
must be printed along the design. The application can then detect those markers and adapt the
cutting path accordingly. The firmware of the F series does not support the well-known OPOS
technology. It does however support OptiSCOUT by means of the program SummaFlex Pro.

• Optional conveyor and media clamps for feeding material through the machine.
• A vacuum pump that creates a vacuum so that the media “sticks” to the cutting surface. This

vacuum can be reserved to blow the media slightly. This for easier media handling.
• A roll support to place a roll of media.

Summa Cutters programmer's guide

3

Some pictures:

Front view:

Rear view

Cutting head with camera/laser pointer/cutting tools.

Summa Cutters programmer's guide

4

2 Writing a Native driver

The cutter understands HP-GL and HP-GL/2. Because HP-GL and HP-GL/2 are almost identical, no
difference is made in this document between both languages. Only a small subset of these
languages is described. Additions have been made to these languages to support all the features of
the flatbed cutter. It is strongly advised to use HPGL.

The X-axis is the direction in which the top beam moves. In which the media is fed through the
cutter. The maximum size of media in X-direction is 50 meter, when feeding media is possible;
otherwise it is the length of the table, for the F1612, this is 1200 mm.

The Y-axis is the direction in which the cut-head moves, the maximum size for the F1612 is 1600
mm.

The origin is at the front right, the front right is where the on/off switch is located.

Summa Cutters programmer's guide

5

2.1 HP-GL Language Basics

Only a subset of HP-GL and HP-GL/2 is presented in this document. “Arc/curve” commands are not
supported.
The standard resolution for most HP–GL commands is 0.025 mm, however for the F series it is 0.01
mm.

Note: All commands must end with a semicolon;

2.1.1 IN; Initialize Command

The IN; initialize command resets all parameters that were changed by HP-GL commands.

2.1.2 BP; Begin Plot Command (only HP–GL/2)

The BP; Begin Plot command resets all parameters that were changed by HP-GL/2 commands.

2.1.3 PA; Absolute Addressing Command

The absolute addressing PA; command selects the Absolute addressing mode. In this mode, all x-, y-
co-ordinates are with respect to the origin at the lower left corner of the chart. The device remains
in this mode until it receives a Relative PR command.

Example: IN; PA; PU 5000,5000;PD 2000,2000;

In this example, the cutter is initialized with the IN; command. Absolute knife positioning is selected
with the PA; command. The knife is sent in “up position” to absolute co-ordinate 5000,5000. The knife
is lowered with the down PD command and a line is cut to absolute co-ordinate 2000,2000.

2.1.4 PR; Relative Addressing Command

The relative PR; command selects the Relative addressing mode. In this mode, all x-, y-co-ordinates
are relative to the present knife position. The device remains in this mode until it receives an Absolute
PA command.

2.1.5 PD x,y; Vector Down Command

The down PD; command lowers the tool. This command causes the knife to move to a new user
position specified by co-ordinate x,y. This new position is dependent on the present Absolute PA or
Relative PR knife positioning command in effect. In Absolute PA mode, the new position is x,y user
units from the present origin. In Relative PR mode, the new position is x,y user units from the present
position.

2.1.6 PU x,y; Vector Up Command

The Up PU; command raises the knife. This command causes the knife to move to a new user position
specified by co-ordinate x,y. This new position is dependent on the present Absolute PA or Relative
PR knife positioning command in effect. In Absolute PA mode, the new position is x,y user units from
the present origin. In Relative PR mode, the new position is x,y user units from the present position.

Summa Cutters programmer's guide

6

2.1.7 SP tool, [slot_number]; Tool Select Command

The SP tool; command selects the tool to be used. (e.g. knife, pen, router, creasing wheel…). The
machine has 3 positions, called slots, where the tool can be mounted. The tools are automatically
detected and selected when receiving the SP command. If a tool is not available on the Flatbed the
job will be aborted. So it is advised to first use the SQ command to prevent this error. The optional
parameter [slot number] is used in case 2 the same tools are mounted on the machine and a specific
tool has to be used. For example when 2 pens are mounted and the one on slot position 1 needs to
be used, then following command can be used: SP19,1;

Slot numbers: 1 = left slot : 2 = Middle slot: 3 = right slot.

Tool Number Tool Names

0 Pen
1 Drag Knife

2..9 Reserved
10 Any cut tool detected on the machine

11..13 Reserved
14 Camera
15 Pointer

16..18 Reserved
19 Cut Out Knife
20 Kiss Cutting Knife
21 Creasing Wheel
22 Oscillating Knife

23..29 Reserved
30 Creasing Wheel type 2
31 Creasing Wheel type 3
32 V-Cut 45
33 V-cut 30
34 V-Cut 22.5
35 V-Cut 15
36 V-cut 0
37 Router

Table: Tool numbers and tool names

Summa Cutters programmer's guide

7

2.1.8 SQ tool; Tool check Command

The SQtool; command checks if a tool is available on the machine. If it is not available the machine
will give a warning and cancel the job. It does not select a tool. It is strongly advised to send the
appropriate tool check command for each tool used in the current job before outputting the job. See
table tools numbers and names for the list of tool numbers.
For example if a job needs a pen and a cut out tool, at the beginning of the job send SQ0; SQ19; The
machine will then check if the tools are fitted on the machine before starting the job.
This command is optional.

2.1.9 VS n; Velocity Command

To set the cutting velocity. n specifies the velocity of the device in cm/s.

2.1.10 RP n; router rotation speed Command

To set the speed of the rotation of the router. This command is ignored when a standard router is
used, only the HF router. n specifies the velocity of the device in rpm.

2.1.11 BC; Bit change command Command

To pause the job and give a signal that the user can change the routing bit.

2.1.12 ZP n,m; Z axis position Command

To set the cutting depth. n value is neglected, m specifies offset from the cutting depth. The table
only accepts negative m values (cutting less deep), if a positive value is used, then the firmware in
the table will automatically ‘add’ a minus before the value. change in cutting depth applies to the
current tool.

2.1.13 OH; Output Hardclip Command

The OH; output hardclip command returns the size of the loaded media.
Data returned by the cutter:

Window
Lower Left

X

Window
Lower Left

Y

Window
Upper Right

X

Window
Upper Right

Y

Carriage
Return

Table - OH Report Format

2.1.14 OA; Output Actual Position

Returns the actual position and up-down status of the tool. All instructions prior to this OA will first
be completed before the machine responds. Data returned by the cutter:
 x,y,p\r\n x and y are the plotter coordinates and p is 1 if tool status is down, 0 if tool status is up.

Summa Cutters programmer's guide

8

2.1.15 FF; Feed Command and FLx; command

If a pneumatic pack and/or conveyor are installed on the cutter, then media can be fed through the
machine. Feeding is started by the FF; command. The Feeding length is controlled by the FLx;
command.
In the FLx; command, x is the length to feed. A negative feed Length is allowed and will result in a
negative feed length, a Feed Length bigger than the table length is allowed, the feeding will then
take place is several steps.

Summa Cutters programmer's guide

9

2.1.16 PB Vacuum control

The vacuum of the machines turns automatically on, as soon as the machine moves. The vacuum will
automatically turn off after 100 seconds of inactivity. It is however possible to turn the vacuum On
or off using the PB command.
PB 2,0; Turns the vacuum off.
PB 2,1; turns the vacuum on.

2.1.17 PS Vacuum direction.

The PS command controls the direction of the vacuum.
PS 1,1; will make sure the vacuum is set in suction position.
PS 1,0; will turn the vacuum in blowing mode. This to allow to remove material from the bed more
easily.
Note: When cutting the vacuum is automatically set in suction mode.

2.1.18 ZT0; Park heads

ZT 0; Parks the heads in up position. It is best to end the job with this command.

2.1.19 AUbeta; define lifting angle

This command defines the maximum angle between 2 vectors. If the angle between 2 vectors is
bigger than this angle, then at the end of the first vector, the tool is raised, rotated in the correct
direction and lowered to continue cutting.

2.1.20 OVn; Overcut distance

Sets the overcut distance (unit = mm).

2.1.21 LMn; Local move commands

When a local move command is sent to the flatbed cutter, the cutter will start moving its cutting
head, in the direction of the specified command, until the cutter receives the end character “#”.

DM/PL command Cutter movement

h +Y

i +X,+Y

j +X

k +X,-Y

l -Y

m -X,-Y

n -X

o -X,+Y

Summa Cutters programmer's guide

10

2.1.22 MStext MESSAGE

Sends a message (text string) to the user interface, the plotter will continue when the message has
been acknowledge on the user interface.
Example MSChange material!;

2.1.23 Sample HP-GL File

IN; PA;PU1000,1000;PD2000,2000;PD 2000,0 ZT0;

In this example, the IN; resets the device. Absolute knife positioning is selected with the PA;
command. The knife is sent in up position to absolute co-ordinate 1000,1000. The knife is lowered
with the Down PD command and a line is cut to absolute co-ordinate 2000,2000 then a line is cut to
position 2000,0.

Summa Cutters programmer's guide

11

2.2 Encapsulated Language
The cutter has a specific language to control some settings of the cutter, this can be used to set
settings such as speed, we however advise to use the HPGL commands for this.

2.3 Contour Cutting
Contour cutting is done using printed registration marks. These marks are then recognized by the
camera installed on the machine. SummaFlex Pro can be used in order to read the markers. This
program does not come for free. It is also possible to write own routines for recognition of the marks.

2.3.1 Mark recognition using Custom software.

The camera is not connected to the controller of the cutter, it is directly connected to the computer
via a USB 2.0 port. USB drivers are only available for Microsoft Windows operating systems (up to
Windows 10). There are no drivers available yet for Mac OS or Linux operating system.

It is possible to read the video stream directly into your software. This is done using the DirectShow
feature of the Windows operating software. Commercial libraries are also available to speed up this
process.

You need to do the following in order to do contour cutting using the camera.

Read the markers using DirectShow and by moving the cutting head to the next markers (using
DMPL or HPGL commands).
Transform the cutting data prior to sending it to the cutter, correction for rotation, origin, scaling will
be necessary.
Send the transformed data to the cutter.
All of this this is quite some work, but it allows the use of custom markers, it allows more flexibility in
your software, it allows better integration within your software.

2.3.2 Mark recognition using SummaFlex Pro.

SummaFlex Pro support the mark recognition and also transforms the cutting data. It is advised to
use the OXF format, SummaFlex however also supports other formats, including plt, pdf and eps.

The markers can be any shape, For SummaFlex Pro however it is strongly recommended to have
circles of 5mm in a color which has a big contrast with the underlying material on which it is printed.
The marks can be placed anywhere in the design, at least 3 are needed and should include the whole
design for better accuracy.

Summa Cutters programmer's guide

12

2.4 USB

2.4.1 Introduction.

The usb communication on the Flatbed cutters is the same as on the other cutters from summa,
the summacut and S class. So the same routines can be used.
First some basics about the USB bus and the support of windows for this bus are described.
Then the specific details of the software-architecture for communication with the cutters are
described.
The document ends with a sample written in C that clarifies the theory.

2.4.2 USB and Windows

USB is a new standard bus available on all new PC’s. This bus offers serial communication at high
speed (12 MBit/s). It is hot pluggable, which means devices can be attached or removed at any time
from the PC.
Only the newest versions of Windows (Windows 98 and Windows 2000) fully support the USB bus.
The USB drivers are only 32-bit compatible, this means that no 16-bit program can communicate
over the USB bus.
The Win32 API (or let say Windows) offers some 32 bit functions to communicate. These functions are
CreateFile(), ReadFile(), WriteFile() and CloseHandle().
More info about these functions can be found in your development tools (Visual C++ or Borland C++
or MSDN). The term ‘file’ also includes communications resources such as the serial RS232 port (COM
port), the parallel port (LPT1) and the USB port.
The CreateFile() is used to get a handle to a file or communication resource. The WriteFile() is then
used to send data to the opened ‘file’. The CreateFile() function can NOT be used directly with the
USB bus. Instead a function (open_file()) provided by Summa must be used. This function does the
same as CreateFile(); it returns a handle to the USB bus for the cutter. Then the WriteFile() and
ReadFile() functions can be used.

2.4.3 USB Pipes

Each USB device (in our case the cutter) communicates to the host software (= software on PC)
through what is called pipes. Most USB devices do have several pipes implemented. The cutter has 3
pipes implemented. This means that there are 3 communications channels between the cutter and
the host software.

The first one is called the Default Control Pipe, the operating software (Windows) uses this pipe for
plug and play. This pipe is used to get information about the USB configuration of the cutter. Third
party developers do not need this pipe.

The two most important pipes are PIPE00 and PIPE01. PIPE01 is an unidirectional pipe that
transports data from the host PC to the cutter. This data is the cut data (DM/PL or HP-GL). PIPE00 is
also unidirectional and carries information from the cutter to the host. For example you can get the
size of the media through this pipe (in DM/PL for example).

So changes for the software in comparison to a RS232 serial port will be that sending data has to be
handled over PIPE01 and receiving data will be handled over PIPE00. Each pipe will need a different
handle compared to RS232.
As an example to get the paper size of the cutter (in DM/PL) you will have to send ‘ ;: ER ’ on PIPE01
and you will have to read the response on PIPE00.

Summa Cutters programmer's guide

13

The third pipe has been called PIPE02. Reading from this pipe returns the free space in the internal
buffer of the cutter. This pipe can be used to implement a software handshake method. This can be
useful as the WriteFile() function only returns when the data that has to be sent is completely
transmitted.

2.4.4 Win32 Software Components

Summa has written a windows driver (SummaUsb.sys) that allows Win32 programs to communicate
with the cutter over the USB bus with the standard Win32 API functions ReadFile(), WriteFile() and
CloseHandle(). Before using this functions you must get a handle to the USB cutter device. For this
use ‘open_file()’, a function that Summa has written. This function is made available through the
SummaUsb.dll. (see the sample on how to use the DLL).

SummaUsb.dll is a Win32 dynamic link library and calls specific functions that only Win98 and
Windows 2000 does support, so you will get an error when trying to load the SummaUsb.dll with
LoadLibrary() when your software is running in Win95 or WinNT 4.0. So before loading this DLL you
should check the windows version. If it is WinNT 4.0 do not load the library or the user will get an
error message on his screen! Windows 95 does not give an error message.

16-bit programs are not supported. You must use the Win32 WriteFile() and ReadFile() functions to
communicate over the USB bus.

Illustration 1 - The different USB software parts

CUTTER

USB Bus

SUMMAUSB.SYS

Win 32 Host
Application

SummaUsb.dll

To get handle for
WriteFile and ReadFile

WriteFile via Pipe01

LoadLibrary/
GetProcAddress

CreateFile

ReadFile via Pipe00

PIPE01 PIPE00

Summa Cutters programmer's guide

14

2.4.5 SummaUsb.sys

The Plug and play Manager from windows automatically load this WDM driver when it detects that
a cutter has been plugged into the USB bus. This driver will be shipped with every cutter on a
Companion CD.

NOTE : The USB bus allows hot plugging and unplugging of the devices attached to
its bus. The cutter may be plugged in after your program has started. You will not get
a handle when the cutter is not plugged in or is powered off. You will only get a handle
to the device after the cutter is powered on and plugged in the USB bus.

In comparison you do always get a handle to a RS232 COM serial port. This is an important difference
that your software should handle. This can best be done by getting a handle to the USB device just
before sending/receiving data. It is preferred not to get a handle at initialization of your program.

2.4.6 SummaUsb.dll

SummaUsb.dll is a dynamic link library that helps you to get an easy access to the handles of the USB
pipes from the cutter. You can get 2 handles to the cutter, one for each pipe. After you have a handle
to the USB cutter, you don’t need SummaUsb.dll anymore. You can use the standard win32 API
functions ReadFile() and WriteFile() to communicate with the cutter.

You will have to include this file in the installation of your product.
This DLL has 1 functions called open_file(), that does the same as CreateFile():

HANDLE __stdcall open_file (char* lpFileName, DWORD dwFlagsAndAttributes);

Parameters
lpFileName
Points to a string that specifies the name of the pipe. The only valid values for that parameter are the
strings “PIPE00” and “PIPE01”. “PIPE00” to read data from the cutter and “PIPE01” to write data to the
cutter.

dwFlagsAndAttributes
Instructs the system whether or not to use asynchronous communication. See information about
CreateFile().

Values: 0(NULL) for synchronous operation or FILE_FLAG_OVERLAPPED for asynchronous operation.

Return Values
If the function succeeds, the return value is an open handle to the specified pipe. If the function fails,
the return value is INVALID_HANDLE_VALUE. To get extended error information, call GetLastError().
The pipe cannot be opened when the cutter is powered off or when the cutter is not connected to
the USB bus.

Note : This function must be declared as __stdcall.

WriteFile() and ReadFile() can then use the handle returned by open_file().

Summa Cutters programmer's guide

15

2.4.7 Win32 Host Application

There are some restrictions on the Win32 API functions ReadFile() and WriteFile().

• Writing Data To Cutter.

You must send the data in little packets (e.g. 256 bytes). This gives much better performance.
When sending a file of 1 Megabyte, for instance, the USB driver stack will take up too much time
and your computer will seem to hang. When sending little chunks it is also easier to cancel a
current job being sent.

When the data is split in packets of 256 bytes, the last packet will probably be smaller than 256
bytes, this is no problem.

If the input buffer of the cutter is full, the WriteFile() function will not return, but it will wait until
some place in the buffer is available.

• Reading Data From Cutter

The timeout principle doesn’t exists on the USB bus, at least not in the same way as in the serial
port. So when querying info from the cutter, you normally first send data on PIPE01 and then
read data on PIPE00. The cutter needs some time to put data on the USB bus after receiving the
request. While the data is not ready the cutter will respond to any query with a zero length
packet. This means the ReadFile() function will return with 0 bytes read. You will have to call
ReadFile() until you get the desired response from the cutter. Calling ReadFile() only once will not
be enough, the cutter needs in most cases to have 2 ReadFile() commands, the first one will
respond with 0 bytes, the second one with the desired response (if the cutter is ready to answer).

So when getting an answer from the cutter of zero bytes or less than expected, does not mean
that no data is available anymore. The cutter needs some time to put the data in its output buffer.
This problem is handled in the sample by adding some delays (see function delayms()).

Reading data must be done by multiples of 16. Do not read 1 byte at a time with the ReadFile()
function! When reading more data than available, the ReadFile() will return with success, but the
number of bytes read will be set to what is really read.

2.4.8 Plug And Play Considerations

USB claims to be plug and play, this means that the user just should plug in the cutter and that all
drivers are installed automatically. This is the case for the low level USB driver (SummaUsb.sys). But
the user still needs to install the correct vector driver within your program(e.g. a DM/PL or HP-GL
driver for Summa), the user also needs to select to which port the cutter/printer is installed.

When using USB you can also introduce plug and play for your software. This means that your
software can automatically choose the correct driver when a cutter from summa is attached on the
USB port without the intervention of the user. To do this you need to check if a cutter from Summa
is attached on the USB port. This will be the case when you get a handle to the USB port. When
getting this handle you know for sure that a cutter from Summa is attached to the USB port. You
could check this for example every time your program is started. Once the cutter is found, you can
then install the correct vector driver and select the USB port. The installation of the driver should
only occur once of course and not every time your program is started.

Summa Cutters programmer's guide

16

2.4.9 Summary

• Make a 32-bit program (Win32) using ReadFile() and WriteFile() to communicate.
• Load the DLL SummaUsb.dll using LoadLibrary().
• Get the address of the function open_file() using GetProcAddress().
• Use open_file() from SummaUsb.dll to get a handle to the USB port instead of CreateFile().
• Open 2 handles, one for reading data and one for writing data.
• Send data in little chunks (e.g. 256 bytes) with WriteFile().
• Read data in multiples of 16 bytes with ReadFile().
• When reading data the cutter may respond with 0 bytes, read more than once, before deciding

the cutter doesn’t respond.
• USB has no time-out function (like the serial port)

2.4.10 Win32 Sample Application

The sample is compiled using Visual C++ 5.0. The sample is a win 32 console application (runs in a
‘DOS’ box). Files are distributed together with this document. The RWSumma.c file gives an example
on how to open handles to the USB pipes and how to send and read data. The sample also shows
how to use SummaUSb.dll and its function “open_file()”.
The method used in this sample is the so-called Run-Time Dynamic Linking. It has the advantage that
the process can continue running even if the DLL is not available. The program can then notify the
user of an error. If the user can provide the full path of the missing DLL, the process can use this
information to load the DLL even though it is not in the normal search path.
This sample does not allow to cancel data or stop the execution of the ReadFile() or
WriteFile() function. It has no time-out function implemented.

/*++
Copyright (c) 1999 Summa N.V.
Module Name:
 RWSumma.c
Abstract:
 Console test app for SummaUsb.sys driver
Environment:
 user mode only
Notes:
 Copyright (c) 1999 Summa N.V. All Rights Reserved.

Revision History:
 11/11/99: created
--*/

#include <windows.h>
#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>
#include <sys\timeb.h>
#include <basetyps.h>

char inPipe[32] = "PIPE00"; // pipe name for bulk input pipe on
our test board
char outPipe[32] = "PIPE01"; // pipe name for bulk output pipe

Summa Cutters programmer's guide

17

on our test board
int gDebugLevel = 1; // higher == more verbose, default is 1, 0
turns off all
int WriteLen = 0; // #bytes to write
int ReadLen = 0; // #bytes to read

// prototype for open_file function from summausb.dll
typedef HANDLE (__stdcall *OPENFILE)(char*, DWORD);
OPENFILE POpenFile;

// functions
/*++
Routine Description:
 waits for a time ms (in milliseconds)
Arguments:
 ms : time to wait in milliseconds
Return Value:
 Zero
--*/
void delayms(double ms)
{
 double elapsed_time = 0;
 struct _timeb start, finish;

 _ftime(&start);
 _ftime(&finish);

 do
 {
 _ftime(&finish);
 elapsed_time = ((finish.time - start.time) * 1000) +
finish.millitm
 -
start.millitm;
 } while (elapsed_time < ms);
}

int _cdecl main(
 int argc,
 char *argv[])
/*++
Routine Description:
 Entry point to RWsumma.exe
 Sends data to the USB cutter and reads response.
Arguments:
 argc, argv standard console 'c' app arguments
Return Value:
 Zero
--*/
{
 char *pinBuf = NULL, *poutBuf = NULL;
 int nBytesRead, nBytesWrite,TotalBytesRead;
 ULONG i;
 UINT success;

Summa Cutters programmer's guide

18

 HANDLE hRead = INVALID_HANDLE_VALUE, hWrite = INVALID_HANDLE_VALUE;
 ULONG totalBytes = 0L;
 char DebugString2[] = " \x1B;@:.MENU. ";
 char DebugString[] = ";: EC1 ER ";

 UINT bResult = 0;

 HINSTANCE hinstLib;
 BOOL fRunTimeLinkSuccess = FALSE;

 // First the SummaUsb Dll will be loaded
 // then we will get the adress of the function needed in the dll

 // Get a handle to the DLL module.
 hinstLib = LoadLibrary("summausb.dll");

 // If the handle is valid, try to get the function address.
 // Note:in Win95 or Win Nt 4.0, the handle will be incorrect.
 // in 16 bit application the handle will also be incorrect
 // (hinstLib will be smaller than 32)
 if (hinstLib != NULL)
 {
 POpenFile = (OPENFILE) GetProcAddress(hinstLib, "open_file");

 // If the function address is invalid, print a error message

 fRunTimeLinkSuccess = (POpenFile != NULL);
 // If unable to call the DLL function, DLL must be corrupted?
 if (! fRunTimeLinkSuccess)
 printf("Error : could not open function OpenFile");
 }
 else
 {
 printf("Error : could not open Summausb.dll\n");
 return (1);
 }

 //
 // open the Read and Write Pipes
 //

 hWrite = (POpenFile)(outPipe, (DWORD)NULL);

 if (hWrite == INVALID_HANDLE_VALUE)
 {
 printf("could not open %s", outPipe);
 return 0;
 }

 hRead = (POpenFile)(inPipe, (DWORD)NULL);

 if (hRead == INVALID_HANDLE_VALUE)
 {
 printf("could not open %s", inPipe);

Summa Cutters programmer's guide

19

 return 0;
 }

 //
 // put some data in the output buffer
 //

 WriteLen = sizeof(DebugString);
 poutBuf = malloc(WriteLen);
 sprintf(poutBuf, DebugString);

 // allocates some memory to put read data.
 ReadLen = 64;
 pinBuf = malloc(ReadLen + 1);

 if (poutBuf && hWrite != INVALID_HANDLE_VALUE)
 {
 // skip any data that is still left in the buffer of the cutter
 // by reading data from the cutter, until no more data is
available

 do
 {
 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead,
NULL);
 delayms(10);
 /* add some kind of timeout or abort procedure ? */
 } while (nBytesRead);

 //
 // send data to the cutter
 //
 WriteFile(hWrite, poutBuf, WriteLen, &nBytesWrite, NULL);
 printf("<%s> W (%04.4d) : request %06.6d bytes -- %06.6d
byte\n",
 outPipe, i, WriteLen,
nBytesWrite);
 }

 if (pinBuf)
 {
 nBytesRead =0;

 /* read untill we get some answer from the cutter */
 /* the cutter will return nBytesRead = 0 as long as no data is
available*/

 while (!nBytesRead)
 {
 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead,
NULL);
 /* add some kind of timeout or abort procedure ? */
 }

Summa Cutters programmer's guide

20

 // we have some data, process it
 pinBuf[nBytesRead] = 0;
 printf(pinBuf);
 printf("\n\r");
 delayms(20); // add some delay to allow the cutter to
prepare its next data

 TotalBytesRead = nBytesRead;

 /*if more data needed read, read more data,
 The cutter will return 0 bytes, while it is preparing its
data !!
 */

 while (nBytesRead)
 {
 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead,
NULL);
 TotalBytesRead += nBytesRead;
 pinBuf[nBytesRead]=0;
 printf(pinBuf);
 delayms(20);
 }

 printf("\n<%s> R (%04.4d) : %06.6d bytes read\n", inPipe, i,

TotalBytesRead);
 }

 if (pinBuf)
 {
 free(pinBuf);
 }

 if (poutBuf)
 {
 free (poutBuf);
 }

 // close devices if needed
 if (hRead != INVALID_HANDLE_VALUE)
 CloseHandle(hRead);
 If (hWrite != INVALID_HANDLE_VALUE)
 CloseHandle(hWrite);

 // free the dll Library
 if (hinstLib)
 FreeLibrary(hinstLib);

 return 0;
}

Summa Cutters programmer's guide

21

2.4.11 Handshake Sample

The following application shows how to implement a handshaking method. It also uses the Run-
Time Dynamic Linking method.
The program starts with creating a handle fp to the file specified in the command-line argument
argv[1]. It then loads the library SummaUSB.dll and stores the handle in hLib. This handle is then
used to retrieve the address of the function open_file to get a handle to an USB-pipe. This address
pOpenFile is then used to get a handle to the USB output-pipe hWrite and status-pipe
hStatus.
Now we are ready to transmit the data to the cutter.
First, we check if we’re not at the end of a file, then we read a chunk of data (up to 256 bytes). If we
could get the data, we have to check if there is space for it in the cutter’s buffer. This is accomplished
by reading form the USB status-pipe hStatus with the ReadFile() function. The data
szBuffer returned represents the free space in the cutter’s internal buffer. The converted value
nBufferFree is compared against the amount of data iCount we’ve previously read. When
there’s not enough space for the data, we enter a loop until space becomes available. As soon as
there’s enough space for the data, we can send it to the cutter using the WriteFile() function
with a handle to the USB output-pipe hWrite.
All this is repeated until all data has been sent to the cutter.
Next, all handles are closed and the Summa USB library hLib is unloaded.

// File2USB.cpp : Defines the entry point for the console
application.

#include <windows.h>
#include <stdlib.h>
#include <stdio.h>

char inPipe[32] = ”PIPE00” ; // pipe to read responces from the
cutter
char outPipe[32] = ”PIPE01” ; // pipe to send data to the cutter
char statusPipe[32] = ”PIPE02” ; // pipe to query free space in the
cutter’s internal buffer

// prototype for open_file function from summausb.dll
typedef HANDLE (__stdcall * OPENFILE)(char *, DWORD) ;
OPENFILE pOpenFile ; // pointer to the open_file function

int main(int argc, char* argv[])
{
 FILE *fp ;
 HMODULE hLib ; // The SummaUSB library handle
 HANDLE hWrite ; // A handle to the USB output pipe
 HANDLE hStatus ; // A handle to the USB status pipe
 char szData[256] ; // The data buffer
 unsigned int iCount ; // Amount of data we’ve read
 char szBuffer[16] ;
 unsigned long n ;
 unsigned long nBufferFree ; // Free space in the cutter’s internal
buffer
 BOOL bSuccess ;

Summa Cutters programmer's guide

22

 // A filename is required
 if (argc != 2)
 {
 printf(”Usage : File2USB <filename>\n”);
 return 1 ;
 }

 // Open the specified file
 fp = fopen(argv[1], ”rb”) ;

 if (fp == NULL)
 {
 printf(”Error: could not open file \”%s\”\n”, argv[1]) ;
 return 2 ;
 }

 // Load the library which connects our app to the USB driver
 hLib = LoadLibrary(”SummaUSB.dll”) ;

 if (hLib == NULL)
 {
 fclose(fp) ;
 printf(”Error: could not open SummaUSB.dll\n”) ;
 return 3 ;
 }

 // Get the address of the function which gives us a handle to the
specified pipe
 pOpenFile = (OPENFILE)GetProcAddress(hLib, ”open_file”) ;

 if (pOpenFile == NULL)
 {
 fclose(fp) ;
 printf(”Error: could not retrieve address of open_file
function\n”, outPipe) ;
 return 4 ;
 }

 // Get a handle to the pipe where whe can put our data
 hWrite = (pOpenFile)(outPipe, 0) ;

 if (hWrite == INVALID_HANDLE_VALUE)
 {
 fclose(fp) ;
 printf(”Error: could not open pipe \”%s\”\n”, outPipe) ;
 return 5 ;
 }

 // Get a handle to the pipe where whe can read the free space in
the cutter’s internal buffer
 hStatus = (pOpenFile)(statusPipe, 0) ;

 if (hStatus == INVALID_HANDLE_VALUE)

Summa Cutters programmer's guide

23

 {
 fclose(fp) ;
 printf(”Error: could not open pipe \”%s\”\n”, statusPipe) ;
 return 6 ;
 }

 bSuccess = TRUE ;

 // Repeat until no more data available or when there are problems
on the USB port
 while (!feof(fp) && bSuccess)
 {
 // Get some data to send
 iCount = fread(szData, sizeof(char), sizeof(szData), fp) ;

 // If there is something to send
 if (iCount > 0)
 {
 // Use software handshaking
 do
 {
 // Read data from USB status pipe
 bSuccess = ReadFile(hStatus, szBuffer,
sizeof(szBuffer), &n, 0) ;
 szBuffer[n] = 0 ; // Terminate string
 nBufferFree = atol(szBuffer) ; // Free space in
internal buffer of the cutter

 } while (bSuccess && nBufferFree < iCount) ; // Repeat
until space becomes available

 // Send the data through the USB output pipe
 bSuccess = WriteFile(hWrite, szData, iCount, &n, 0) ;
 }
 } ;

 CloseHandle(hStatus) ;
 CloseHandle(hWrite) ;
 fclose(fp) ;

 // Release the SummaUSB library
 FreeLibrary(hLib) ;
 return 0;
}

Summa Cutters programmer's guide

24

2.5 Wii Remote
Axis Control uses a Wii Remote as an extension of the keyboard.
This can be used for example to set the origin of the machine.

All Wii Remote keys are hooked to virtual key codes:

A VK_ENTER
B VK_SHIFT
1 VK_F1
2 VK_F2
- VK_PRIOR
+ VK_NEXT
Home VK_ESCAPE
Up arrow VK_UP
Down arrow VK_DOWN
Left arrow VK_LEFT
Right arrow VK_RIGHT

Other programs can catch and process the Wii Remote key events.

1. Register our event “AxisControlCatchWiiRemote” to get the right message ID.

UINT Msg = RegisterWindowsMessage(“AxisControlCatchWiiRemote”);

2. To start catching Wii Remote key events.

PostMessage(HWND_BROADCAST, Msg, 1, (long)(…your window handle…);

3. To stop catching Wii Remote key events.

PostMessage(HWND_BROADCAST, Msg, 0, 0);

Do not forget to stop catching Wii Remote key events, else Axis Control will not work properly
anymore until restarted!

Summa Cutters programmer's guide

25

3 The OXF format

This format is supported by SummaFlex and SummaFlex Pro. It is the advised format to use when
working with SummaFlex.

The data format: HPGL, with a few extras.
File extension: .OXF (OptiSCOUT exchange file)
Resolution: 0.01 mm.

Different layers are separated by HPGL "SP" commands. The layer 99 (SP99) must contain the
registration marks. These marks must be circles of 5 mm.

The OXF format is explained in another document.

	1 Introduction
	2 Writing a Native driver
	2.1 HP-GL Language Basics
	2.1.1 IN; Initialize Command
	2.1.2 BP; Begin Plot Command (only HP–GL/2)
	2.1.3 PA; Absolute Addressing Command
	2.1.4 PR; Relative Addressing Command
	2.1.5 PD x,y; Vector Down Command
	2.1.6 PU x,y; Vector Up Command
	2.1.7 SP tool, [slot_number]; Tool Select Command
	2.1.8 SQ tool; Tool check Command
	2.1.9 VS n; Velocity Command
	2.1.10 RP n; router rotation speed Command
	2.1.11 BC; Bit change command Command
	2.1.12 ZP n,m; Z axis position Command
	2.1.13 OH; Output Hardclip Command
	2.1.14 OA; Output Actual Position
	2.1.15 FF; Feed Command and FLx; command
	2.1.16 PB Vacuum control
	2.1.17 PS Vacuum direction.
	2.1.18 ZT0; Park heads
	2.1.19 AUbeta; define lifting angle
	2.1.20 OVn; Overcut distance
	2.1.21 LMn; Local move commands
	2.1.22 MStext MESSAGE
	2.1.23 Sample HP-GL File

	2.2 Encapsulated Language
	2.3 Contour Cutting
	2.3.1 Mark recognition using Custom software.
	2.3.2 Mark recognition using SummaFlex Pro.

	2.4 USB
	2.4.1 Introduction.
	2.4.2 USB and Windows
	2.4.3 USB Pipes
	2.4.4 Win32 Software Components
	2.4.5 SummaUsb.sys
	2.4.6 SummaUsb.dll
	2.4.7 Win32 Host Application
	2.4.8 Plug And Play Considerations
	2.4.9 Summary
	2.4.10 Win32 Sample Application
	2.4.11 Handshake Sample

	2.5 Wii Remote

	3 The OXF format

