

Summa S Class 3

Programmer's Guide

Revision: 1123/1

Revision History

JUN 2023 Initial version.

AUG 2023 First release.

SEP 2023 Added eng_sdk@summa.com as general contact address.

NOV 2023 Added Cut-off with End Of Plot Command for DM/PL.

mailto:eng_sdk@summa.com

Notice
This document may be printed and copied solely for use in developing products for Summa cutters.

Summa reserves the right to modify the information contained in this document at any time without prior

notice. Unauthorized copying, modification, distribution or display is prohibited. All rights reserved.

Please address all questions, comments or suggestions concerning this and other Summa manuals to:

 Rochesterlaan 6

 B-8470 Gistel

 Belgium

Copyright © Summa

All names and trademarks are the property of their owners.

MI9841 SDK S Class 3

i

Table of Contents

1 Introduction .. 1

2 Cutter Commands ... 1

2.1 DM/PL Language Basics... 1
2.1.1 Introduction ... 1
2.1.2 The ;: Select Command ...2
2.1.3 The ECx Coordinate Addressing Command ..2
2.1.4 The A Absolute Addressing Command ...2
2.1.5 The R Relative Addressing Command ...3
2.1.6 The D Down Command..3
2.1.7 The U Up Command ..3
2.1.8 The x,y Vector Move Command ..3
2.1.9 The e End Of Plot Command ...3
2.1.10 The ce Cut-off with End Of Plot Command .. 4
2.1.11 The @ Deselect Command ... 4
2.1.12 The BPn Tool Pressure Command .. 4
2.1.13 The BOn Overcut Command... 4
2.1.14 The BMn Multipass Command ... 4
2.1.15 The Fn Frame Command .. 4
2.1.16 The Px Tool Select Command ...5
2.1.17 The Vn Velocity Command ..5
2.1.18 The ER Report Command ..6
2.1.19 The EWx Job Length Command ... 7
2.1.20 Sample DM-PL File ..8

2.2 HP-GL Language Basics ..9
2.2.1 The IN; Initialize Command ..9
2.2.2 The BP; Begin Plot Command ...9
2.2.3 The PAx,y; Absolute Addressing Command ..9
2.2.4 The PRx,y; Relative Addressing Command ...9
2.2.5 The PDx,y; Down Command ..9
2.2.6 The PUx,y; Up Command ..9
2.2.7 The VSn; Velocity Command .. 10
2.2.8 The SPn; Tool Select Command ... 10
2.2.9 The FSn; Force Select Command ... 10
2.2.10 The OVn; Overcut Command .. 11
2.2.11 The MPn; Multipass Command .. 11
2.2.12 The OH; Output Hardclip Command .. 11
2.2.13 The PG; End Of Plot Command .. 11
2.2.14 The EC; Enable Cut-off Command ... 11
2.2.15 The EWx; Job Length Command .. 11
2.2.16 Sample HP-GL File ... 11

3 Encapsulated Language .. 13

3.1 Changing Parameters Settings Commands ... 14
3.1.1 MARKER_X_DIS = [a number in the range 1200 to 52000] ... 14
3.1.2 MARKER_Y_DIS = [a number in the range 1200 to 64000] ... 14
3.1.3 MARKER_X_SIZE = [a number in the range 80 to 400] .. 14

MI9841 SDK S Class 3

ii

3.1.4 MARKER_Y_SIZE = [a number in the range 80 to 400] .. 14
3.1.5 MARKER_X_N = [a number in the range 2 to 128] ... 14
3.1.6 SPECIAL_LOAD = [OPOS,OPOS_XY,OPOS_XY2,OPOS_XTRA] .. 15
3.1.7 SHEET_MODE = [OFF,ON] .. 15
3.1.8 PANELLING = [OFF,ON] .. 15
3.1.9 PANELLING_SIZE = [a number in the range 1 to 250] ... 15
3.1.10 RECUT_OFFSET = [a number in the range 0 to 4000] ... 15
3.1.11 CUTMEDIA_OFFSET = [a number in the range 0 to 250] ... 15
3.1.12 VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000] 15
3.1.13 OVERCUT = [a number in the range 0 to 10] ... 16
3.1.14 OPTICUT = [ON,OFF] ... 16
3.1.15 TOOL = […] .. 16
3.1.16 FLEX_CUT = [OFF,MODE1,MODE2] .. 16
3.1.17 FULL_PRESSURE = [a number in the range 20 to 1000] ... 16
3.1.18 CUT_LENGTH = [a number in the range 10 to 10000] ... 16
3.1.19 FLEX_PRESSURE = [a number in the range 20 to 1000] ... 16
3.1.20 FLEX_LENGTH = [a number in the range 10 to 10000] .. 16
3.1.21 FLEX_VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000,AUTO] 16
3.1.22 FLEX_PANEL_SIZE = [a number in the range 1 to 250] ... 17
3.1.23 SORTING_ENABLE = [OFF,ON,START_POINT] ... 17
3.1.24 MULTIPASS = [a number in the range 1 to 7]... 17

3.2 Executive Commands ... 17
3.2.1 SET_ORIGIN = X,Y. ... 17
3.2.2 LOAD_MARKERS. .. 17
3.2.3 RECUT = n. ... 19

3.3 Response Commands ... 19
3.3.1 MENU. ... 19
3.3.2 MENU [item name]. .. 20
3.3.3 QUERY. .. 21

3.4 Encapsulated File Example .. 21

4 OPOS Outline Cutting .. 22

4.1 Introduction ... 22

4.2 Contour Cutting Problems ... 22

4.3 The OPOS Alignment Method ... 23

4.4 Registration marks ... 24
4.4.1 Shape ... 24
4.4.2 Size ... 24
4.4.3 Position .. 24
4.4.4 OPOS XY ... 26
4.4.5 OPOS XY2 ... 27
4.4.6 OPOS XTRA ... 28
4.4.7 OPOS BARCODE ... 29

4.5 Data sent to the cutter ... 33
4.5.1 OPOS Commands. .. 33

MI9841 SDK S Class 3

iii

4.5.2 Cutting Data ... 34
4.5.3 Sample File ... 34

4.6 Automating OPOS ... 35
4.6.1 Introduction ... 35
4.6.2 Identical jobs on a roll ... 35
4.6.3 Different jobs on a roll ... 36
4.6.4 Identical jobs on several sheets .. 37
4.6.5 OPOS BARCODE ... 38

5 Cutting Through. ... 42

5.1 Introduction. .. 42

5.2 FlexCut ... 42

5.3 Tool 6 & Tool 10 ... 43

5.4 Guidelines ... 44

6 TCP/IP .. 45

6.1 Introduction ... 45

6.2 Description by MSDN on graceful close. .. 45

6.3 Discovering Ethernet devices ... 49

7 USB ... 53

7.1 Introduction ... 53

7.2 USB and Windows .. 53
7.2.1 USB Pipes ... 53

7.3 Win32 Software Components .. 54
7.3.1 SummaUsb.sys ... 55
7.3.2 SummaUsb.dll .. 55
7.3.3 Win32 Host Application ... 56

7.4 Summary .. 57

7.5 Win32 Sample Application ... 57

7.6 Handshake Sample ... 62

8 Appendix ... 65

8.1 Maximum Pressure and Speed by Model ... 65

MI9841 SDK S Class 3

1

1 Introduction
The information contained in this package is designed to allow technically competent personnel to

develop software and drivers compatible with the cutters from Summa. For any questions on this

document, please contact eng_sdk@summa.com.

2 Cutter Commands
The cutter understands 3 languages: DM/PL, HP-GL and HP-GL/2. Because HP-GL and HP-GL/2 are

almost identical, no difference is made in this document between both languages. Only a small subset

of these languages is described and supported by the cutters from Summa.

The cutter also has a specific language for changing the parameters of the cutters such as the velocity

and pressure. This language is called encapsulated language.

The X-axis is the direction in which the media moves, the maximum size of media in X-direction is 50

meter. It’s advised to minimize the media movement by cutting shapes from the front to the back.

The Y-axis is the direction in which the cut-head moves, the maximum size varies depending on the

model.

Illustration 2.1 - Media Orientation

2.1 DM/PL Language Basics

2.1.1 Introduction

In order to be fully compatible with the many features incorporated in the cutter itself, such as automatic

FlexCut or recut from the cutter UI, follow these guidelines:

1. Each DM/PL file can be preceded by encapsulated commands, for example to setup the

parameters for OPOS.

2. Each DM/PL file must include following commands in the initialization string:

- The ;: Select command.

- The ECx command.

- The A or R command.

3. Afterward, you have the option to use some additional commands such as the Tool select Px

command. This can be used multiple times within a file. It is also possible to request the size of

MI9841 SDK S Class 3

2

the loaded media, using the ER command.

4. Vector data using U and D commands follow.

5. An end of file command is strongly recommended to terminate the file. The end of file

commands are: @ or e commands. The e command is recommended.

If you don’t want to move to the end of the cut sign, then use @ command. However if you want

to move to the end of the cut sign, then use the e command. These end of file commands are

necessary if you want to use the FlexCut feature, the panelling feature and the OPOS features.

With the Fx command you have more flexibility on where to move the knife at the end of the file.

2.1.2 The ;: Select Command

The Select ;: command (semicolon double point) selects the cutter. When the cutter is selected it can

receive information until it receives a deselect command (e or @).

Note: This command is required before every any other data string.

2.1.3 The ECx Coordinate Addressing Command

The Coordinate Addressing ECx command sets user units to a specified resolution, raises the knife,

moves it to the home position.

n selects the addressing resolution, (resolution of the x- and y-coordinates) and is an alphanumeric

expression 0, 1, 5, M, or N (see Table 2.1 - Coordinate Addressing).

Command User Resolution

EC1 0,001 inch

EC5 0,005 inch

ECM 0,1 mm

ECN 0,025 mm

Table 2.1 - Coordinate Addressing

Note: This command is required at the start of the data string.

2.1.4 The A Absolute Addressing Command

The Absolute addressing A command selects the absolute addressing mode. In this mode, all x- and y-

coordinates are with respect to the origin at the lower left corner of the chart. The device remains in

this mode until it receives a Relative addressing R command or a deselect command (e or @).

Example: ;: EC1 A U 5000,5000 D 2000,2000 e

In this example, the device is selected with the ;: command and 1/1000 inch resolution is selected with

the EC1 command. Absolute knife positioning is selected with the A command. The knife is sent in up

position to absolute coordinate 5000,5000. The knife is lowered with the down D command and a line

is cut to absolute coordinate 2000,2000. The device is deselected with a deselect e command.

Note: If no addressing mode is specified before any vector data is processed the

Absolute addressing mode will be used by default.

MI9841 SDK S Class 3

3

2.1.5 The R Relative Addressing Command

The Relative Addressing R command selects the relative addressing mode. In this mode, all x- and y-

coordinates are relative to the present knife position. The device remains in this mode until it receives

an Absolute Addressing A command or a deselect command (e or @).

Example: ;: EC1 R U 5000,5000 D 2000,2000 e

In this example, the device is selected with the ;: command and 1/1000 inch resolution is selected with

the Coordinate Addressing EC1 command. Relative knife positioning is selected with the R command.

The knife is sent to relative coordinate 5000,5000. The knife is lowered and a line is cut to relative

coordinate 2000,2000 (this is absolute coordinate 7000,7000). The device is deselected with the

deselect e command.

Note: If no addressing mode is specified before any vector data is processed the

Absolute addressing mode will be used by default.

2.1.6 The D Down Command

The Down D command lowers the tool. The tool remains in the down position until an Up U, Coordinate

Addressing EC, Frame F or End of Plot e command is received.

2.1.7 The U Up Command

The Up U command raises the tool.

2.1.8 The x,y Vector Move Command

This command causes the tool to move to a new user position specified by coordinate x,y. This new

position depends on the present Absolute Addressing A or Relative Addressing R tool positioning

command in effect, and the current user unit (see 2.1.3 The ECx Coordinate Addressing Command). In

Absolute Addressing A mode, the new position is x,y user units from the present origin. In Relative

Addressing R mode, the new position is x,y user units from the present position.

Example: ;: ECM A D 0,1000 1000,1000 1000,0 0,0 U e

In the above sample, the cutter is selected, set to 0.1mm resolution, absolute addressing with the ECM

command, then the tool is lowered and a square of 10 centimetres is cut. The tool is then raised and

the device is deselected with the e command.

Note: All coordinates MUST be integer values only.

2.1.9 The e End Of Plot Command

For roll media the origin is moved several mm’s beyond the last sign, more precise, beyond the last

down vector. The amount it moves behind the last cut sign is defined with the RECUT_OFFSET parameter

(can be set via encapsulated language or via the cutter UI). The end of plot command also deselects

the cutter. If new data needs to be sent, it must be preceded by the ;: select command.

The recut command (encapsulated or through keypad) will work correctly when using this command.

MI9841 SDK S Class 3

4

2.1.10 The ce Cut-off with End Of Plot Command

The S class 3 cutter has a “cut-off knife” to cut off a sheet out of a roll. Sending the ce command will

cut off the media while doing the end of plot command. To optimize the media usage, the RECUT_OFFSET

will be used in combination with the CUTMEDIA_OFFSET.

Note: The recut offset should be larger than the cut-off margin if both parameters

are used together. For OPOS jobs, using the cut-off command, it is required that the

recut offset is at least 30mm bigger than the cut-off margin.

2.1.11 The @ Deselect Command

The Deselect @ command sets the cutter deselected. After the device receives the command, it

continues to process the data that is already in the buffer and does not accept new data until it is

selected again.

The deselect command does not affect any of the device’s parameters, such as the resolution, origin,

etc…

The recut command (can be set via encapsulated language or via the cutter UI) will work correctly when

using this command.

2.1.12 The BPn Tool Pressure Command

The Tool Pressure BPn command sets a desired pressure. The argument n specifies the pressure in

grams. The numeric range for n is an integer from 0 to the maximum pressure, which depends on the

device (see 8.1 Maximum Pressure and Speed by Model).

2.1.13 The BOn Overcut Command

The Overcut BOn command sets the desired overcut. The argument n specifies the length of the overcut

in 0,1mm. The numeric range for n is an integer from 0 to 10.

2.1.14 The BMn Multipass Command

The Multipass BMn Command sets the amount of times the same cutline will be cut. The numeric range

for n is an integer from 1 to 7.

On receiving a tool select Px command, this parameter is reset to the value stored in the MULTIPASS

parameter (can be set via encapsulated language or via the cutter UI).

2.1.15 The Fn Frame Command

The Frame Fn command is used to move the origin in X-axis direction. Upon receipt of this command

the tool is raised and the media is advanced to the new home position.

n specifies the location of the new home position. This parameter is expressed in user units as set by

the present coordinate addressing EC command. n can be positive or negative. If n is zero, the present

position is defined as the new home position, but the media does not advance.

Example: ;: EC1 F1000

With EC1 (see 2.1.3 The ECx Coordinate Addressing Command) the coordinate addressing is set to

1/1000 inch, the Fn command sets the new home position 1000 user units (= 1 inch) from the present

one, and advances accordingly the media with 1 inch.

MI9841 SDK S Class 3

5

2.1.16 The Px Tool Select Command

The Tool Select Px Command selects a given tool. The cutter will pause at execution of the command,

and allows manual selection of the tool by the operator if the selected tool is different from the one

being used.

The tool commands P6 or P10 (P6 is recommended) turn on the FlexCut option, no intervention of the

operator will be needed.

For the PRO CAM head, that incorporates a tool and an extra tool, no operator intervention will be

needed when switching between knife (P1) and the extra pen (P9) for example.

Following table describes the tool number necessary to select a certain tool, depending on the cutter-

head that the cutter is equipped with.

Tool selected on machine equipped with:

Tool selection

command

Drag head Tangential head PRO CAM head

P100 U Use current installed tool

P0 Drag knife Tangential knife Tangential knife

P1 Drag knife Tangential knife Tangential knife

P2 Pen Pen Pen

P6 FlexCut(1) mode with knife FlexCut(1) mode with knife FlexCut(1) mode with knife

P7 x x Extra pen (P9 preferred)

P8 Drag knife Drag knife Drag knife

P9 x x Extra pen

P10 FlexCut(1) Basic mode with

knife

FlexCut(1) Basic mode with

knife

FlexCut(1) Basic mode with

knife

P11 x Tangential knife Tangential knife

P12 x x Extra creaser

Table 2.2 - DM/PL Tool Select Command

(1) Cutting through media, see Chapter 6

Note: Speed, pressure, overcut and multipass are reset on receiving a Tool Select

Command.

2.1.17 The Vn Velocity Command

The Velocity Vn command sets the axial velocity of the tool (down position speed) for cutting. The

integer argument n specifies the tool down velocity of the device and depends on the current coordinate

addressing:

⚫ If the present Coordinate Addressing is EC0, EC1 or EC5, then the units are in inches per

second.

Example: ;: EC1 A V5 U 0,0 D 0,2500 2500,2500 2500,0 0,0 U e

MI9841 SDK S Class 3

6

In the above sample, the cutter is selected, set to 1/1000-inch resolution, absolute

addressing, a velocity of 5 inches per second with the V5 command, then the tool is lowered

and a square of 2.5 inches is cut. The tool is then raised and the device is deselected with the

e command.

⚫ If the present Coordinate Addressing is ECM or ECN, the units are in centimeters per second.

Example: ;: ECM A V50 U 0,0 D 0,2500 2500,2500 2500,0 0,0 U e

In this sample, the cutter is again selected, the resolution is now set to 0.1 millimeter, and the

velocity is then set to 50 centimeter per second with the V50 command.

2.1.18 The ER Report Command

The Report ER command allows the device to send its present status to the computer. It is mainly used

to retrieve the size of the inserted media.

When the device processes a Report ER command, the following information is transmitted:

• Status Byte One indicates the number of the last selected pen/knife, the present up or down

status of the pen/knife, whether or not the present location of the knife on the cutting surface is

inside the window limits, and the present full or half chart format (large or small). See also Table

2.4 - ER Report Format. Note that bit seven is always set to 0.

7 6 5 4 3 2 1 0

0 0 = Large Chart

1 = Small Chart

0 = Inside Window

1 = Outside Window

0 = Pen Up

1 = Pen Down

Pen Number

(MSB)

Pen Number Pen

Number

Pen Number (LSB)

Table 2.3 - Status Byte One

• Status Byte Two is not used (Reserved).

• The remaining bytes indicate: the present x-, y-coordinate position of the knife, the present window

limit coordinates, and the present viewport limit coordinates.

Note: All coordinates are in user units (see 2.1.3 The ECx Coordinate Addressing

Command) and relative to the origin.

The report information is sent in ASCII BCD (binary-coded decimal) format. The values that make up

the status string are decimal integers. The digits of each decimal integer are represented by their ASCII

equivalents. It is the responsibility of the receiving software to convert the ASCII representations of the

decimal integers to binary decimal integers before performing any mathematical operations on them.

The report is always enclosed within parentheses () and followed by a carriage return. Commas separate

the values. The sign of each x-, y-coordinate immediately precedes the coordinate value. A space

indicates a positive value, while a minus (-) indicates a negative value. Each status byte is three digits

in length. The x,y coordinate length is 7 digits. Leading zeros are used as required to pad the x-, y-

coordinate lengths to their appropriate lengths. The total string length is 100 characters.

MI9841 SDK S Class 3

7

Summary of data sent :

(

StatusByte 1 Status

byte2

Current

X pos

Current

Y pos

Window

Lower

Left X

Window

Lower

Left Y

Window

Upper

Right X

Window

Upper

Right Y

Viewport

Lower

Left X

Viewport

Lower

Left y

Viewport

Upper

Left X

Viewport

lower Left

X

) CR

Table 2.4 - ER Report Format

Example : ;: ECN ER

In this example, the device is selected with the In this example, the device is selected with the ;:

command and 0.025mm resolution is selected with the Coordinate Addressing ECN command. The

cutter is then commanded to send a report with the ER command.

ER returns:
(017,084, 0001000, 0002000, 0000000, 0000000, 2000000, 0014650, 0000000,

0000000, 2000000, 0014650)<CR>

In this report we can analyse the following:

• Status Byte One (017) shows that tool 1 was the last requested tool and it is presently in the

down position inside the present window limits.

• Status Byte Two (084) is reserved and not used.

• Current X Position (0001000) : the present tool-position x-coordinate is

1000 * 0.025mm = 25 mm.

• Current Y Position (0002000) : the present tool-position y-coordinate is

2000 * 0.025 mm = 50 mm.

• Window Lower Left X (0000000) defines the lower left x-coordinate of the window at 0.

• Window Lower Left Y (0000000) defines the lower left y-coordinate of the window at 0.

• Window Upper Right X (2000000) defines the upper right x-coordinate of the window at 2000000

* 0.025mm = 50000mm = 50m.

• Window Upper Right Y (0014650) defines the upper right x-coordinate of the window at 14650 *

0.025mm = 366.25mm.

• Viewport Lower Left X (0000000) defines the lower left x-coordinate of the viewport at 0.

• Viewport Lower Left Y (0000000) defines the lower left y-coordinate of the viewport at 0.

• Viewport Upper Right X (2000000) defines the upper right x-coordinate of the viewport at

2000000 * 0.025mm = 50000mm = 50m.

• Viewport Upper Right Y (0014650) defines the upper right x-coordinate of the viewport at 14650

* 0.025mm = 366.25mm.

• A carriage return <CR> terminates the report.

Summarized we can say that a knife was selected and that it is in the down position, at x-y location

25mm and 50mm from the origin. There is media loaded which is 366.25mm wide and 50m long. As this

is the available media-size, actual media-size may differ, because we need some space for the pinch-

rollers to hold the media. There is also an assumption that a full roll of vinyl was present.

2.1.19 The EWx Job Length Command

The job length EWx sets the length of the job, x specifies the length of the job. This parameter is

expressed in user units as set by the coordinate addressing EC command. The EW command should

be sent before any cut data and after the addressing command.

When the cutter receives this command, it will pre-load the distance x. The Report ER command can

be used to check the distance that could be loaded.

MI9841 SDK S Class 3

8

This command should not be used in combination with panelling as it would cancel out the benefits

of panelling (The biggest advantage of using panelling is that it does not preload the complete job).

Example: ;: EC1 EW40000

With EC1 (see 2.1.3 The ECx Coordinate Addressing Command) the coordinate addressing is set to

1/1000 inch, the EW command will unroll the media so that a job of 40000 user units (= 40 inch)

fits on the unrolled media.

2.1.20 Sample DM-PL File

;: EC1 A U 1000,1000 D 2000,2000 2000,0 e

In this example, the device is selected with the ;: command and 1/1000 inch resolution is selected with

the Coordinate Addressing EC1 command. Absolute knife positioning is selected with the A command.

The knife is sent in up position to absolute coordinate 1000,1000. The knife is lowered with the Down

D command and a line is cut to absolute coordinate 2000,2000. Then a line is cut to position 2000,0.

The media is moved to the end of the cut area by the e command, so that the next sign will not be placed

above the current one. This command also deselects the device.

MI9841 SDK S Class 3

9

2.2 HP-GL Language Basics

Only a subset of HP-GL and HP-GL/2 is presented in this document and supported by our cutters.

There is no need for an select command, most often HP-GL files start with an IN; or BP; command.

The standard resolution for HP–GL is 0.025 mm and all commands must end with a semicolon ;. It is

strongly recommended to end a file with a PG; command, otherwise functions like recut, FlexCut,

panelling or OPOS barcode will not work.

2.2.1 The IN; Initialize Command

The IN; initialize command resets all parameters that were changed by HP-GL commands.

2.2.2 The BP; Begin Plot Command

The BP; Begin Plot command resets all parameters that were changed by HP-GL/2 commands and moves

the origin to the end of the previous cut sign.

2.2.3 The PAx,y; Absolute Addressing Command

The Absolute Addressing PA; command selects the absolute addressing mode. In this mode, all x-, y-

coordinates are with respect to the origin at the lower left corner of the chart. The device remains in

this mode until it receives a Relative Addressing PR command.

Example: IN; PA; PU 5000,5000;PD 2000,2000;

In this example, The cutter is initialized with the IN; command. Absolute knife positioning is selected

with the PA; command. The knife is sent in up position to absolute coordinate 5000,5000. The tool is

lowered with the Down PD command and a line is cut to absolute coordinate 2000,2000.

2.2.4 The PRx,y; Relative Addressing Command

The Relative Addressing PR; command selects the relative addressing mode. In this mode, all x-, y-

coordinates are relative to the present tool position. The device remains in this mode until it receives an

Absolute Addressing PA command.

2.2.5 The PDx,y; Down Command

The Down PD; command lowers the knife. This command causes the knife to move to a new user position

specified by coordinate x,y. This new position is dependent on the present Absolute PA or Relative PR

Addressing command in effect. In Absolute Addressing PA mode, the new position is x,y user units from

the present origin. In Relative Addressing PR mode, the new position is x,y user units from the present

position.

2.2.6 The PUx,y; Up Command

The Up PU; command raises the knife. This command causes the knife to move to a new user position

specified by coordinate x,y. This new position is dependent on the present Absolute PA or Relative PR

Addressing command in effect. In Absolute Addressing PA mode, the new position is x,y user units from

the present origin. In Relative Addressing PR mode, the new position is x,y user units from the present

position.

MI9841 SDK S Class 3

10

2.2.7 The VSn; Velocity Command

The Velocity VS; Command sets the down velocity. n specifies the velocity of the device in cm/s.

2.2.8 The SPn; Tool Select Command

The Tool Select SPn Command selects a given tool. The cutter will pause at execution of the command,

and allows manual selection of the tool by the operator if the selected tool is different from the one

being used.

The tool commands P6 or P10 (P6 is recommended) turn on the FlexCut option, no intervention of the

operator will be needed.

For the PRO CAM head, that incorporates a tool and an extra tool, no operator intervention will be

needed when switching between knife (P1) and the extra pen (P9) for example.

Following table describes the tool number necessary to select a certain tool, depending on the cutter-

head that the cutter is equipped with.

Tool selected on machine equipped with:

Tool selection

command

Drag head Tangential head PRO CAM head

P100 U Use current installed tool

P0 Drag knife Tangential knife Tangential knife

P1 Drag knife Tangential knife Tangential knife

P2 Pen Pen Pen

P6 FlexCut(1) mode FlexCut(1) mode FlexCut(1) mode with tangential

knife

P7 x x Extra pen (P9 preferred)

P8 x Drag knife Drag knife

P9 x x Extra pen

P10 FlexCut(1) Basic mode FlexCut(1) Basic mode FlexCut(1) Basic mode with

tangential knife

P11 x Tangential knife Tangential knife

P12 x x Extra creaser

Table 2.5 – HP-GL Tool Select Command

(1) Cutting through media, see Chapter 6

Note: Speed, pressure, overcut and multipass are reset on receiving a Tool Select

Command.

2.2.9 The FSn; Force Select Command

The Force Select FSn; command sets the tool pressure. It is expressed in grams. The numeric range for

n is an integer from 0 to the maximum pressure that depends on the device (see 8.1 Maximum Pressure

and Speed by Model).

MI9841 SDK S Class 3

11

2.2.10 The OVn; Overcut Command

The Overcut OVn command sets the desired overcut. The argument n specifies the length of the overcut

in 0,1mm. The numeric range for n is an integer from 0 to 10.

2.2.11 The MPn; Multipass Command

The Multipass MPn Command sets the amount of times the same cutline will be cut. The numeric range

for n is an integer from 1 to 7.

On receiving a tool selected command, this parameter is reset to the value stored in the MULTIPASS

parameter (can be set via encapsulated language or via the cutter UI).

2.2.12 The OH; Output Hardclip Command

The OH; output hardclip command returns the size of the loaded media. Data returned by the cutter:

Window

Lower Left

X

Window

Lower Left

Y

Window

Upper Right

X

Window

Upper Right

Y

Carriage

Return

Table 2.6 - OH Report Format

2.2.13 The PG; End Of Plot Command

For roll media the origin is moved several mm’s beyond the last down vector, so that a new sign is not

cut on the previous one. The amount it moves behind the last cut sign is defined with the RECUT_OFFSET

parameter.

2.2.14 The EC; Enable Cut-off Command

The S class 3 cutter has a “cut-off knife” to cut off a sheet out of a roll. Sending the EC; command will

enable cut off while doing the end of plot command. To optimize the media usage, the RECUT_OFFSET

will be used in combination with the CUTMEDIA_OFFSET.

So to cut off the media, send the design, send the EC; command and finally send the PG; command.

Note: The recut offset should be larger than the cut-off margin if both parameters

are used together. For OPOS jobs, using the cut-off command, it is required that the

recut offset is at least 30mm bigger than the cut-off margin.

2.2.15 The EWx; Job Length Command

The EWx; job length command sets the length of the job, x specifies the length of the job. This

parameter is expressed in user units. The EW command should be sent before any cut data.

When the cutter receives this command, it will pre-load the distance x. The OH; output hardclip

command can be used to check the distance that could be loaded.

This command should not be used in combination with panelling as it would cancel out the benefits

of panelling (The biggest advantage of using panelling is that it does not preload the complete job).

2.2.16 Sample HP-GL File

Example: IN; PA;PU1000,1000;PD2000,2000;PD 2000,0;PG;

MI9841 SDK S Class 3

12

In this example, the IN; resets the device. Absolute tool positioning is selected with the PA; command.

The tool is sent in up position to absolute coordinate 1000,1000. The tool is lowered with the Down PD

command and a line is cut to absolute coordinate 2000,2000 then a line is cut to position 2000,0. The

media is moved to the end of the cut area by the PG; command, so that the next sign will not be placed

above the current one.

MI9841 SDK S Class 3

13

3 Encapsulated Language
The cutter control commands listed below constitute the machine’s native control language.

The encapsulated commands are given in the form:

 COMMAND option1 | option2 | option3

Where “command” is the command to type in (including spaces and the “=“ symbol) and “option1”,

“option2”, etc. stand for the values or arguments that work with the command. You can only use one

argument at a time. Alternative arguments are shown separated by “|” which is not part of the command

or its argument. End each command with a period, or with a carriage return/line feed pair (generated

by pressing the <Enter> key on PC-compatible computers).

Possible commands are:

SET item_name = option.

END.

MENU [menu item].

QUERY.

SET_ORIGIN.

LOAD_MARKERS.

The command interpreter is activated when the cutter receives the following sequence of characters:

 <esc>;@:

The sequence begins with the escape character (ASCII 27 in decimal, followed by ASCII 58, 64 and 59).

When activated, the command interpreter responds with “READY”. It prompts you to enter commands

with the “>“ symbol.

END.

After accessing the machines command interpreter, send an END command to the machine to exit the

command interpreter. During the dialogue with the machine, send an END command to end the dialogue

session. When creating a data encapsulation file, put “END” immediately before the beginning of the

data to plot. A period, rather than a carriage return/line feed pair, is the preferred way to terminate the

END command in a data encapsulation file, since it provides a visible marker at the end of the

encapsulation header.

Note : After accessing the machines command interpreter, be sure to send an “END.”

command before sending any data to cut. Otherwise the machine will try to interpret

the data as encapsulated control commands, with unpredictable results.

MI9841 SDK S Class 3

14

3.1 Changing Parameters Settings Commands

The SET command is used to set the menu items. For more information about the menu items, check

the cutter user manual.

3.1.1 MARKER_X_DIS = [a number in the range 1200 to 52000]

Allows for the marker y distance to be specified in 0.025 mm units.

<esc>;@:

SET MARKER_X_DIS=2400.

END.

This sample defines the X-markers 60 mm apart.

3.1.2 MARKER_Y_DIS = [a number in the range 1200 to 64000]

Allows for the marker y distance to be specified in 0.025 mm units.

<esc>;@:

SET MARKER_Y_DIS=21600.

END.

This sample defines the Y-markers 540 mm apart.

3.1.3 MARKER_X_SIZE = [a number in the range 80 to 400]

Allows for the marker x size to be specified in 0.025 mm units.

The default value is 120.

<esc>;@:

SET MARKER_X_SIZE=120.

END.

This sample defines an X-marker size of 3mm.

3.1.4 MARKER_Y_SIZE = [a number in the range 80 to 400]

Allows for the marker y size to be specified in 0.025 mm units.

The default value is 120.

<esc>;@:

SET MARKER_Y_SIZE=120.

END.

This sample defines an Y-markers size of 3mm.

Note: The S Class 3 only supports square marks, so x size and y size should be the

same.

3.1.5 MARKER_X_N = [a number in the range 2 to 128]

Allows for the number of markers along the x axis to be specified. When the special load procedure is

MI9841 SDK S Class 3

15

called with MARKER_X_N, then the specified number of markers will be searched for.

The minimum value to be used for MARKER_X_N is 2 as a minimum of 2 markers is needed along the x

axis.

<esc>;@:

SET MARKER_X_N=6.

END.

3.1.6 SPECIAL_LOAD = [OPOS,OPOS_XY,OPOS_XY2,OPOS_XTRA]

Use this to set select which kind of alignment method will be used in the print and cut workflow after

the “LOAD_MARKERS” command.

Note: The alignment method must be set by the RIP, the S Class 3 cutter does not

have the option to set the alignment method through the UI.

3.1.7 SHEET_MODE = [OFF,ON]

Enables the sheet mode. When turned on the alignment and/or cutting will be started automatically

from the 2nd sheet on. The default value is OFF.

<esc>;@:

SET SHEET_MODE ON.

END.

3.1.8 PANELLING = [OFF,ON]

Defines if the machine should panel the data.

3.1.9 PANELLING_SIZE = [a number in the range 1 to 250]

Sets the panel size in cm.

3.1.10 RECUT_OFFSET = [a number in the range 0 to 4000]

Sets the offset between two job when recutting the same job in mm.

3.1.11 CUTMEDIA_OFFSET = [a number in the range 0 to 250]

Sets the offset used to cut off the media after a job in mm.

3.1.12 VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000]

Use this command to specify the velocity in mm/s. The maximum speed depends on the model (see 8.1

Maximum Pressure and Speed by Model). If an invalid value is used the command will be ignored and

machine velocity will not change. Accepted values for specific model can be requested by using the

MENU command (see 3.3.2 MENU [item name].).

<esc>;@:

SET VELOCITY=600.

END.

MI9841 SDK S Class 3

16

3.1.13 OVERCUT = [a number in the range 0 to 10]

Use this command to set overcut. One unit is about 0.1 mm.

The default value is 1.

3.1.14 OPTICUT = [ON,OFF]

Use this command to set the OptiCut.

3.1.15 TOOL = […]

For cutters with drag head

TOOL = [PEN,DRAG_KNIFE]

For cutters with tangetial head

TOOL = [PEN,DRAG_KNIFE,TANGENTIAL_KNIFE]

For cutters with tangential PRO CAM head:

TOOL = [PEN,DRAG_KNIFE,TANGENTIAL_KNIFE,EXTRA_PEN,CREASER]

Use this command to select the cutter’s tool.

3.1.16 FLEX_CUT = [OFF,MODE1,MODE2]

Use this to enable FlexCut mode, set to mode 1 or mode 2.

Note: It’s recommend to use the Tool Select Command in DM/PL or HP-GL to use

FlexCut. The FLEX_CUT is considered as deprecated.

3.1.17 FULL_PRESSURE = [a number in the range 20 to 1000]

Sets the full pressure value for FlexCut mode in gram (see 8.1 Maximum Pressure and Speed by Model).

3.1.18 CUT_LENGTH = [a number in the range 10 to 10000]

Sets the length value to cut at full pressure for FlexCut mode specified in 0.025 mm units.

3.1.19 FLEX_PRESSURE = [a number in the range 20 to 1000]

Sets the flex pressure (reduced pressure) value for FlexCut mode in gram (see 8.1 Maximum Pressure

and Speed by Model).

3.1.20 FLEX_LENGTH = [a number in the range 10 to 10000]

Sets the length value to cut at flex pressure for FlexCut mode specified in 0.025 mm units.

3.1.21 FLEX_VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000,AUTO]

Use this command to specify the velocity when cutting through in flex-mode, this in mm/s. The

maximum speed depends on the model (see 8.1 Maximum Pressure and Speed by Modell). When set to

Auto, it will follow the VELOCITY settings.

MI9841 SDK S Class 3

17

3.1.22 FLEX_PANEL_SIZE = [a number in the range 1 to 250]

Sets the panel size in cm for FlexCut mode.

3.1.23 SORTING_ENABLE = [OFF,ON,START_POINT]

Defines if vector optimization is done or not. ON means that vectors are optimized for the cutting

direction (media movement), while START_POINT optimizes the starting point for closed curves.

3.1.24 MULTIPASS = [a number in the range 1 to 7]

Defines how many times the same cutline will be cut. If set to n, the same line will be cut n times. Default

is 1.

3.2 Executive Commands

3.2.1 SET_ORIGIN = X,Y.

This command moves the origin relatively from the current position. If no X and Y are specified the

current position will be the new origin. X/Y can be either positive or negative. The unit of the coordinates

is 0.025 mm.

<esc>;@:

SET_ORIGIN=0,6000.

END.

3.2.2 LOAD_MARKERS.

Allows the user to execute the “SPECIAL_LOAD” alignment method. If the LOAD_MARKERS procedure is

aborted or the cutter failed to sense all the markers properly this command will return “ERROR : [error

message].”

If the LOAD_MARKERS procedure properly senses all markers, “MARKERS LOADED.” will be returned.

Note: The LOAD_MARKERS command should always be preceded by the

alignment method. Whether the command is used in the cut data or as a start

command for the Barcode workflow.

Use of LOAD_MARKERS as start of barcode workflow.

<ESC>;@:

SET SPECIAL_LOAD = OPOS_BARCODE.

LOAD_MARKERS.

END.

Use of LOAD_MARKERS in cut data.

<ESC>;@:

SET SPECIAL_LOAD = OPOS_XY.

SET MARKER_X_SIZE = 80.

SET MARKER_Y_SIZE = 80.

SET MARKER_X_DIS = 4400.

SET MARKER_Y_DIS = 3920.

SET MARKER_X_N = 2.

MI9841 SDK S Class 3

18

LOAD_MARKERS.

END.

MI9841 SDK S Class 3

19

3.2.3 RECUT = n.

Recuts the last job n times.

<esc>;@:

RECUT 12.

END.

3.3 Response Commands

Response commands are used to elicit information from the cutter. Response commands are useful only

during dialogues with the cutter’s command interpreter, in which the cutter’s responses can be received.

See Dialogue Example below for an example of their use.

3.3.1 MENU.

When the command interpreter receives the MENU command by itself, the interpreter responds with the

following information:

item count ITEMS-

item name1 : type = current value

item name2 : type = current value

...

where “item count” is the number of configuration settings: “item name1”, “item name2”, etc. are the

names of the settings; “type” is the type of value allowed for each setting; and “current value” is the

current value for each setting.

Send the following to the cutter:

<esc>;@:

MENU.

END.

This could result in the following prompt, dependent of the capabilities of the connected cutter:

READY.

>54 ITEMS-

 KNIFE_PRESSURE : numeric{0..600} = 50

 PEN_PRESSURE : numeric{0..600} = 80

 DRAG_OFFSET : numeric{0..100} = 43

 VELOCITY : enumtext{50,100,200,300,400,500,600,700,800,900,1000} = 800

 OVERCUT : numeric{0..10} = 0

 CONCATENATION : numeric{0..20} = 0

 OPTICUT : enumtext{OFF,ON} = OFF

 SMOOTHING : enumtext{OFF,ON} = OFF

 EMULATION : enumtext{DMPL,HPGL,HPGL_2,AUTO} = AUTO

 TOOL : enumtext{BALLPOINT,T_DRAG_KNIFE,TANGENTIAL_KNIFE,POUNCER} = T_DRAG_KNIFE

 MENU_UNITS : enumtext{ENGLISH,METRIC} = METRIC

 DMPLADDRESSING : enumtext{EC1,EC5,ECN,ECM,EC0} = ECN

 HPGL_ORIGIN : enumtext{CENTER,RIGHT_FRONT} = RIGHT_FRONT

 BAUD_RATE : enumtext{2400,4800,9600,19200,38400,57600} = 38400

 PARITY : enumtext{NONE,MARK,EVEN,ODD} = NONE

 RTS/DTR : enumtext{TOGGLE,HIGH} = TOGGLE

 TOOL_COMMANDS : enumtext{ACCEPT,IGNORE} = ACCEPT

 AUTOLOAD : enumtext{ON,OFF,ASK} = ON

 SPECIAL_LOAD : enumtext{OPOS,XY_ADJUST,XY_ALIGN,X_ALIGN,OPOS_XY,OPOS_BARCODE,FORCE_OPOSXY} = OPOS

 OPOS_SHEET_MODE : enumtext{OFF,ON} = OFF

 FLEX_CUT : enumtext{OFF,MODE1,MODE2} = OFF

 FULL_PRESSURE : numeric{0..600} = 70

 CUT_LENGTH : numeric{10..10000} = 144

MI9841 SDK S Class 3

20

 FLEX_PRESSURE : numeric{0..600} = 30

 FLEX_LENGTH : numeric{10..10000} = 19

 FLEX_VELOCITY : enumtext{50,100,200,300,400,500,600,700,800,900,1000,AUTO} = AUTO

 CONFIGUSER : numeric{1..8} = 1

 MEDIA_SENSE : enumtext{OFF,ON,FRONT_OFF} = FRONT_OFF

 MARKER_X_DIS : numeric{1200..52000} = 2400

 MARKER_Y_DIS : numeric{1200..64000} = 21600

 MARKER_X_SIZE : numeric{48..400} = 80

 MARKER_Y_SIZE : numeric{48..400} = 80

 MARKER_X_N : numeric{2..128} = 14

 40G_PRESSURE : numeric{0..250} = 26

 400G_PRESSURE : numeric{0..250} = 200

 DRAG_LANDING : numeric{0..250} = 17

 PEN_LANDING : numeric{0..250} = 17

 TANG_LANDING : numeric{0..250} = 17

 RECUT_OFFSET : numeric{0..4000} = 0

 CUTMEDIA_OFFSET : numeric{0..255} = 0

 LANGUAGE : enumtext{ENGLISH,FRENCH,GERMAN,SPANISH,ITALIAN,DUTCH,POLISH,CZECH} = ENGLISH

 POUNC_PRESSURE : numeric{0..600} = 120

 POUNC_GAP : numeric{1..50} = 1

 UP_VELOCITY : enumtext{50,100,200,300,400,500,600,700,800,900,1000,AUTO} = AUTO

UP_ACCELERATION_ : enumtext{1,2,3,5,10,20,25,30,35,40,AUTO} = AUTO

DOWN_ACCELERATION_ : enumtext{1,2,3,5,10,20,25,30,35,40,AUTO} = AUTO

 VEL_LONG_VECTOR : enumtext{AUTOMATIC,NORMAL} = AUTOMATIC

 TURBOCUT : enumtext{QUALITY,SPEED} = SPEED

 QUALITY_TUNING : enumtext{OFF,ON} = ON

 ROLL_UP : enumtext{OFF,END_OF_JOB,END_OF_PANEL} = OFF

 PANELLING : enumtext{OFF,ON} = OFF

 PANELLING_SIZE : numeric{0..250} = 50

 PANEL_REPLOT : numeric{0..99} = 0

 SORTING_ENABLE : enumtext{OFF,ON} = OFF

>

3.3.2 MENU [item name].

When you add the name of a setting (item name) to the MENU command, the command interpreter

responds with the type of value and the current value for the setting named:

item name: type = current value

Send this:

<esc>;@:

MENU VELOCITY.

END.

To receive this :

READY

>

 VELOCITY : enumtext{50,100,200,300,400,500,600,700,800,900,1000} = 600

>

MI9841 SDK S Class 3

21

3.3.3 QUERY.

When you send the QUERY command, the command interpreter responds with the cutter’s model name

and ROM number.

Send the following to the cutter:

<esc>;@:

QUERY.

END.

You will receive something like this :

>

S3T160

9987005 9987005

>

3.4 Encapsulated File Example

The following is an example of a data encapsulation file header, placed before a plot. The encapsulation

header contains cutter control commands that configure the cutter for a plot following the header.

Comments in italics are not part of the example file.

<esc>;@: Initialize encapsulation

SET VELOCITY = 600. Set velocity to 600 mm/s

END. Terminate encapsulation

Note: In this example, a period, rather than a carriage return/line feed pair, has

been used to terminate a command. The init-string doesn’t need a period.

MI9841 SDK S Class 3

22

4 OPOS Outline Cutting

4.1 Introduction

Summa supports several systems for aligning media in their cutters. These alignment systems are used

to do the contour cutting of printed designs.

This chapter first describes shortly the principle of the OPOS alignment systems and which support the

sign-making software should include.

The second part describes in detail how to implement the OPOS alignment system in the sign-making

software.

4.2 Contour Cutting Problems

Depending on the selected alignment method, the cutters can counterbalance the following

irregularities:

1. Rotated Design

If the printed design is not loaded straight into the unit, the contour can be rotated equally to fit the

printed graphic.

2. Skewed Design

If the X and Y-axes of the printed design are not perpendicular, the contour can be skewed to fit the

printed design.

3. Incorrectly Scaled Design

If the print size is different from the original design in your software due to media expansion or

shrinkage, or due to printing inaccuracies, the contour can be scaled to fit the printed graphic.

Note: The scaling can only be adjusted by a few percent.

Any combination of the three above irregularities can be handled too. The encapsulated parameter

SPECIAL_LOAD determines which alignment method is used.

MI9841 SDK S Class 3

23

4.3 The OPOS Alignment Method

The S Class 3 cutter has an option called OPOS. This accurate Optical POsitioning System guarantees

precise contour cutting. The registration markers are read automatically with an optical system, which

can be a sensor or a camera.

The basic idea for printing and cutting with OPOS is described hereafter in several steps:

1. Create a design for printing and cutting.

2. Add registration markers to the design. The sign-making software should facilitate this procedure

for the user. The software should automatically place the markers at the correct place and with the

correct size.

3. Print the design together with the markers.

4. Insert the design in the cutter.

5. Send commands to the cutter, which inform the cutter about the amount, the size and the position

of the markers.

6. Start the OPOS load procedure on the cutter; this procedure will register the markers. The software

can initiate this procedure.

7. The next step will be for the user to manually position the optical sensor near the first marker.

8. Finally the software must send the outline of the design to the cutter (in the DM/PL or HP-GL vector

language). The cutter will then cut the design precisely and compensate errors from alignment,

calibration differences between printer and cutter, rotation of media and skewing.

Note: The information that the cutter requires (info about markers (5), starting the

OPOS load procedure (6) and the cutting data (8)) can all be sent at once to the

cutter after the printed design is inserted in the cutter.

In this document there are several references to the X and Y-axis. With the X-axis is meant the axis in

which the media moves, the Y-axis correspond to the movement of the cutting head. This is the same

coordinate system as for the DM/PL and HP-GL vector language used for the cutting data. The origin of

the cutter is at the lower right corner of the media and corresponds to coordinate X=0 and Y=0.

MI9841 SDK S Class 3

24

4.4 Registration marks

To have full advantage of the OPOS alignment system the placement of the markers should be done fully

automatically by the software. The software should have an option that places all the necessary marks

for the current design. The software should then also automatically send the info about the marks to

the cutter.

4.4.1 Shape

The marks must be black rectangles, all of the same size.

4.4.2 Size

It is advised to use square marks of 3 mm by 3 mm. This means that the X-size is 3 mm and the Y-size

is 3 mm. Do not use marks smaller than 2 mm and do not use marks bigger than 5 mm.

4.4.3 Position

Make sure there is a white margin of about 3-4 times the mark size around the mark. If anything is

printed within this margin the sensor may have trouble to locate the marks.

The first mark must be positioned at the origin of the drawing, at coordinate (0,0). More precisely the

lower right corner of the mark must be at coordinate (0,0). All cutting data must then be related to the

lower right corner of the mark.

Note: Make sure there is at least 1 cm, preferably 2 cm margin between the marks

and the edge of the media on the left, right and front side. For the rear edge of the

media there should be at least 4 cm of margin.

Exactly 2 rows of marks along the Y-axis are necessary. The first row includes the origin mark and is

placed on the right side of the design along the Y-axis. The Y-coordinate of the right side of these marks

must be 0 (see illustration 4.1 - OPOS Marks Layout).

The second row is also placed along the Y-axis at position Y-distance at the left side of the picture. The

right side of these marks must be at position Y-distance (see illustration 4.1 - OPOS Marks Layout).

The Y-distance between the marks can go up to 1600 mm. This is the widest media that a cutter from

Summa can accommodate.

There are 2 or more marks along the X-axis necessary. The distance between 2 marks along the X-axis

(called X-distance) must be the same for all marks. The advised X-distance is 400 mm. Do not go beyond

1000 mm.

The distance between 2 marks is measured from lower right corner to lower right corner in both X and

Y direction as shown in.

It is advised to put marks till the end of the drawing (in the X-direction). The last mark however does

not have to be past the design. The OPOS alignment system will extrapolate the information as needed.

Note: It can be useful to place a sign somewhere indicating the origin mark. This is

useful when the printed design needs to be loaded in the cutter. Also make sure

there is enough white space around every mark.

MI9841 SDK S Class 3

25

Illustration 4.1 - OPOS Marks Layout

Illustration 4.2 - OPOS Marks placement

MI9841 SDK S Class 3

26

4.4.4 OPOS XY

The S Class 3 cutter also supports an extra correction along the Y-axis, this feature is called OPOS XY.

It will compensate for misalignment between what is printed and what is cut along the Y-axis due for

example for curved print-outs along this axis.

In order to do this, a line must be added along the Y-axis between or slightly beyond the first markers.

The left and right margin between the line and the markers should be 10 mm for optimal sensing.

The thickness of the line should be 3mm.

Illustration 4.3 - OPOS XY

The OPOS XY is an extra alignment mode. So it can be set by means of the encapsulated parameter

SPECIAL_LOAD.

 [ESC];@:

 SET SPECIAL_LOAD OPOS_XY.

 END.

When enabled, the line will automatically be sensed several times in function of the width of the job.

MI9841 SDK S Class 3

27

4.4.5 OPOS XY2

A first enhancement for OPOS XY is called OPOS XY2. If a line is printed between the two top marks,

then this line can be scanned also, this feature is called OPOS XY2. The combination with the front and

back XY-line, allows the system to contour cut longer jobs more accurately. It will compensate for

misalignment between what is printed and what is cut along the Y-axis due for example for curved print-

outs along this axis, and adjust along the X axis if the curvature is not the same at the bottom as at the

top.

In order to do this, a line must be added along the Y-axis between the last marks.

The left and right margin between the line and the markers should be 10 mm for optimal sensing.

Illustration 4.4 - OPOS XY2

The OPOS XY2 is an extra alignment mode. So it can be set by means of the encapsulated parameter

SPECIAL_LOAD.

 [ESC];@:

 SET SPECIAL_LOAD OPOS_XY2.

 END.

When enabled, the front and rear line will automatically be sensed several times in function of the width

of the job. OPOS XY2 is automatically converted to OPOS XY if panelling is used.

MI9841 SDK S Class 3

28

4.4.6 OPOS XTRA

The newest option for compensating misalignment along the Y axis is OPOS XTRA. This is again an

enhancement of the OPOS XY function that allows the system to contour cut longer jobs with even more

accuracy.

It will compensate for misalignment between what is printed and what is cut along the Y-axis due for

example for curved print-outs along this axis, and adjust along the X axis if the curvature changes in

the printing direction.

For this option it is required to print a line (analogue to the OPOS XY line) between the left and right

OPOS mark. All these lines will be scanned be sensed several times in function of the widths of the sign

in order to compensate.

The left and right margin between the line and the markers should be 10 mm for optimal sensing.

Illustration 4.5 - OPOS XTRA

The OPOS XTRA is an extra alignment mode. So it can be set by means of the encapsulated parameter

SPECIAL_LOAD.

 [ESC];@:

 SET SPECIAL_LOAD OPOS_XTRA.

 END.

When enabled, the lines will automatically be sensed several times in function of the widths of the sign.

Note: Because of its definition this is an OPOS option that will be used when using

multiple copies in the RIP.

MI9841 SDK S Class 3

29

4.4.7 OPOS BARCODE

The OPOS system is also capable of reading a barcode in order to identify the job. This way multiple jobs

can be processed after each other without operator intervention. See section 4.6 on A for more info on

how to use OPOS BARCODE in a workflow.

The Summa barcode consists of a line along the Y-axis with a POSTNET code on top of it. This line should

be 3mm thick, aligned to the bottom of the markers and leave 10mm of white space between the markers

and this line. On wider jobs this line will also be used as OPOS XY-line. On top of this line the barcode

must be placed aligned to the right nearby the marker indicating the origin.

Illustration 4.6 - Basic OPOS BARCODE

MI9841 SDK S Class 3

30

The barcode is based upon ‘Postnet’ used by the US post (http://en.wikipedia.org/wiki/POSTNET).

Summarized definition:

Illustration 4.7 - US Post Barcode

Illustration 4.8 - Barcode values

• The first and last full bars in a barcode—the frame bars—do not count.

• Each digit (numeric value) is represented by five bars.

• Value is 11 digit number.

• The last five bars in the barcode make up the correction character. All barcodes, when added

together, must equal a multiple of 10.

http://en.wikipedia.org/wiki/POSTNET

MI9841 SDK S Class 3

31

The OPOS BARCODE should be three times the official size and placed on a line.

Illustration 4-9 - Size of OPOS Barcode Digit

Illustration 4.10 - OPOS Barcode Size

Note: In order not to mislead the OPOS sensor while looking for the job, the area

outside the markers should remain blank. All extra’s (job-references, color-bars, ..)

should be placed inside the job area.

(25.4 / 22) * 3

(25.4*0.02) * 3

(2
5
.4

 *
0
.1

2
5
)

*
3

(2
5
.4

 *
0
.0

5
)

*
3

3.51 mm

9
.5

3

m
m

3
.8

1

m
m

1.52mm

212 mm
3 times official POSTNET size 9

,5
 m

m

3

 t
im

e
s
 o

ff
ic

ia
l
P

O
S

T
N

E
T

 s
iz

e

 m
m

MI9841 SDK S Class 3

32

In following figure the areas that need to stay blank are made gray.

Illustration 4.11 - OPOS BARCODE Margins

Note: When using the cut-off option, then the distance between 2 jobs must be at

least 30 mm more than the cut-off margin.

The OPOS BARCODE workflow can be started from the software or from the cutter UI. To start it from

the software a command is used similar to setting the alignment method.

 [ESC];@:

 SET SPECIAL_LOAD = OPOS_BARCODE.

 LOAD_MARKERS.

 END.

NOTE: Use the “SET SPECIAL_LOAD = OPOS_BARCODE.” in combination with “LOAD

MARKERS.” only to start the barcode workflow. Do not use this command in the

cutfiles, as it is similar to the alignment mode command, the command interpreter

of the cutter might misinterpret it as an alignment mode.

MI9841 SDK S Class 3

33

4.5 Data sent to the cutter

4.5.1 OPOS Commands.

Before sending the cutting data (in DM/PL or HP-GL) to the cutter, the cutter must get information about

the markers and the registration of the markers must be initiated. To do this the “encapsulated”

language is used.

Following information must be sent to the cutter:

1. The size of the markers, both X-size and Y-size.

2. The distance between 2 markers in both directions.

3. The number of markers (in 1 row).

4. The type of registration procedure (in our case OPOS).

5. A command to start the registration of the markers.

This is done using the next encapsulated commands:

SET SPECIAL_LOAD = [OPOS,OPOS_XY,OPOS_XY2,OPOS_XTRA]

This command specifies which alignment method to use. In our case it will be OPOS.

SET MARKER_X_DIS = [a number in the range 1200 to 52000]

This command sets the marker X distance. The unit is 0.025 mm.

SET MARKER_Y_DIS = [a number in the range 1200 to 64000]

This command sets the marker Y distance. The unit is 0.025 mm.

SET MARKER_X_SIZE = [a number in the range 80 to 400]

This command sets the marker X Size. The unit is 0.025 mm.

SET MARKER_Y_SIZE = [a number in the range 80 to 400]

This command sets the marker Y Size. The unit is 0.025 mm.

SET MARKER_X_N = [a number in the range 2 to 128]

This command specifies the number of markers in 1 row along the X-axis. So it does not specifies the

total number of markers but only half of them.

SET SPECIAL_LOAD = OPOS_BARCODE.

This command in combination with the following command start up the barcode workflow.

LOAD_MARKERS.

This command starts (initiates) the procedure to register the markers on the cutter. After this command

is sent to the cutter, the cutter will ask the user to set the optical sensor near the first marker. Then all

the markers will be sensed automatically.

MI9841 SDK S Class 3

34

4.5.2 Cutting Data

The outline of the design can be sent in either DM/PL or HP-GL to the cutter. Important is that the origin

of the cutting data is situated at the same place as the origin marker and more precisely at the Lower

Right corner of this marker. To be sure that the origin is correct you can include the first marker in the

outline data.

4.5.3 Sample File

Now follows an example of a cutting file that matches a printed design where markers of 2mm by 2mm

where used. The distance between the markers is 400 mm in the X-direction and 1200 mm in the Y-

direction. There are a total of 3 markers in one row, or 6 markers in total.

<esc>;@:

SET SPECIAL_LOAD=OPOS.

SET MARKER_X_DIS=16000.

SET MARKER_Y_DIS=48000.

SET MARKER_X_SIZE=80.

SET MARKER_Y_SIZE=80.

SET MARKER_X_N=3.

LOAD_MARKERS.

END.

<contour cutting information in DMPL, HPGL or HP–GL/2>

MI9841 SDK S Class 3

35

4.6 Automating OPOS

4.6.1 Introduction

There are 4 cases supported to facilitate the use of several jobs that must be cut with OPOS. The main

purpose to automate OPOS is to reduce the user intervention and time. Only for the first job the user

will have to select the first marker. Then no more user intervention will be needed.

1. Identical jobs on a roll.

2. Different jobs on a roll.

3. Identical jobs on several sheets.

4. Using a barcode system

The scenarios are described in the following sections.

4.6.2 Identical jobs on a roll

Use the following procedure to cut several identical signs printed on a roll.

• Send the OPOS parameters that fit the sign as described in section 4.5.

• Tell how far 2 signs are from each other. For this purpose set the RECUT_OFFSET parameter. The

RECUT_OFFSET parameter must be equal to the distance between the last marker on the first sign

and the first marker on the next sign.

Note: When using the cut-off option, then the distance between 2 jobs must be at least 30 mm more

than the cut-off distance.

• Then send the LOAD_MARKERS command.

• Then send the contour data (DMPL). End this DMPL file with the DMPL ‘e’ command (end of plot

command).

Sample1 shows how to automate small jobs (less than 8 MB)

Sample 2 shows how to automate bigger jobs.

SAMPLE 1:

<ESC>;@:

SET SPECIAL_LOAD=OPOS.

SET MARKER_X_SIZE 80.

SET MARKER_Y_SIZE 80.

SET MARKER_X_DIS 4400.

SET MARKER_Y_DIS 3920.

SET MARKER_X_N 2.

SET RECUT_OFFSET 40.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 e @

<ESC>;@:

RECUT 3

END.

MI9841 SDK S Class 3

36

SAMPLE 2:

<ESC>;@:

SET SPECIAL_LOAD=OPOS.

SET MARKER_X_SIZE 80.

SET MARKER_Y_SIZE 80.

SET MARKER_X_DIS 4400.

SET MARKER_Y_DIS 3920.

SET MARKER_X_N 2.

SET RECUT_OFFSET 40.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 e @

4.6.3 Different jobs on a roll

Use the following procedure to cut several different signs printed on a roll.

1. Send the OPOS parameters that fit the first sign as described in section 4.5.

2. Send the “LOAD_MARKERS” command.

3. Then send the contour data of the first sign (DMPL). DO NOT End this DMPL file with the DMPL ‘e’

command (end of plot command)

4. Now use the SET_ORIGIN command to tell where the first marker of the next sign is compared to

your current position.

5. Send the OPOS parameters that fit the second sign.

6. Then send the “LOAD_MARKERS” command.

7. Then send the contour data of the second sign (DMPL). DO NOT End this DMPL file with the DMPL

‘e’ command (end of plot command)

8. Repeat step 4 to 7 as much as necessary.

MI9841 SDK S Class 3

37

SAMPLE 3:

ESC;@:

SET SPECIAL_LOAD=OPOS.

SET MARKER_X_SIZE 120.

SET MARKER_Y_SIZE 120.

SET MARKER_X_DIS 3200.

SET MARKER_Y_DIS 3200.

SET MARKER_X_N 2.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 0 0,0 @.

4.6.4 Identical jobs on several sheets

Use the following procedure to cut several identical signs printed on several sheets.

1. Send the OPOS parameters that fit the sign as described in section 4.5.

2. Turn on the OPOS_SHEET_MODE.

3. Send the “LOAD_MARKERS” command.

4. Send the contour data (DMPL).

5. Now the user will have to remove the sheet of media and when he inserts a new sheet, the

markers will be sensed and the same sign will be cut again. This will occur until the user presses

RESET on the front panel.

SAMPLE 4

<ESC>;@:

SET SPECIAL_LOAD=OPOS.

SET MARKER_X_SIZE 120.

SET MARKER_Y_SIZE 120.

SET MARKER_X_DIS 3200.

SET MARKER_Y_DIS 3200.

SET MARKER_X_N 2.

SET OPOS_SHEET_MODE ON.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 0 @.

MI9841 SDK S Class 3

38

4.6.5 OPOS BARCODE

The barcode system is used when several jobs are printed after each other. Each job has a barcode that

indicates the jobnumber.

After activation, OPOS will start looking for the first job and scan the barcode. The jobnumber will be

sent to the computer. On the computer a kind of ‘Barcode server’ should be running, monitoring the

port for incoming jobnumbers. On receipt of the jobnumber the software should select the correct

contour job and sent the data as a standard OPOS job. OPOS will start scanning the job (with the OPOS

information it received in the file) and cut the contours.

Note: While the barcode server on the computer is running and the computer is

waiting for a new jobnumber, the communication port should be kept open in order

not to lose connection with the cutter.

When the job is finished, it will automatically start looking for the next job. When it finds a new job with

valid barcode it will sent the jobnumber to the computer and wait for the data.

This continues until no new valid job is found or if the computer doesn’t return any data.

Barcode server in Summa Cutter Control:

Summa Cutter Control is a Windows based utility to monitor all parameters of the cutter from the

computer. In version 4.8 (or later) a barcode server is implemented. This can be used for testing during

implementation. But can also be used as a final solution in combination with other software. For the

barcode server, the OPOS jobs need to be stored in ready to sent data files. File name should be the

barcode number and the extension can be *.plt *.dmpl *.dmp *.hpgl *.hpg or *.prn (eg:

12345678901.plt)

MI9841 SDK S Class 3

39

Illustration 4.12 - OPOS Barcode workflow

Error routine

End Barcode Mode

Request for reference
poin t

Search for job

Return Error message

Clear error message
on keypad

valid jobnumber?

Fi rst request?

Found val id job?

Y

Y

Y

N

N

N

Start barcode search

Start OPOS Job

Send
 ‘Load_Markers’

 command

Activate
‘Special Load’
on keyboard

Scanning port
Wai ting for message

Waiting for data

Send data for job

Start

Start barcode server

Execute OPOS Job.

Cutter Software

OR

<BC>12345678901</BC><EC>Error message</EC>

OPOS job data

using USB or RS232using USB or RS232

Return jobnumber

Press barcode

Button on

keyboard

MI9841 SDK S Class 3

40

Use the following procedure to activate the barcode system.

1. Send the “SPECIAL_LOAD = OPOS_BARCODE” command.

2. Send the “LOAD_MARKERS” command.

Note: these first two steps can also so be executed on the keyboard of the Summa Cutter.

3. Wait until a jobnumber (11-digit number) is receipt.

Returnformat: <BC>###########</BC>

4. Send the OPOS parameters that fit the jobnumber as described in section 4.5.

5. Send the “LOAD_MARKERS” command.

6. Then send the contour data of the first sign (DMPL). End this DMPL file with the DMPL ‘@’ command

(deselect command).

• After cutting the contour and receipt of the ‘@’ command, OPOS will start looking a next job and

return the next jobnumber. Repeat step 3 to 6 as much as necessary.

• If no new job is found or the barcode is invalid a error string is returned:
<EC>error message</EC>.

SAMPLE:

<ESC>;@:

SET SPECIAL_LOAD = OPOS_BARCODE

LOAD_MARKERS.

END.

Wait for job number

Returned: <BC>12345678901</BC>

<ESC>;@:

SET SPECIAL_LOAD OPOS_XY

SET MARKER_X_SIZE 80.

SET MARKER_Y_SIZE 80.

SET MARKER_X_DIS 4400.

SET MARKER_Y_DIS 3920.

SET MARKER_X_N 2.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 @

Wait for job number

Returned: <BC>10987654321</BC>

<ESC>;@:

SET SPECIAL_LOAD OPOS

SET MARKER_X_SIZE 80.

SET MARKER_Y_SIZE 80.

SET MARKER_X_DIS 4500.

SET MARKER_Y_DIS 3960.

SET MARKER_X_N 3.

LOAD_MARKERS.

END.

;:ECN A U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 @

Wait for job number ...

MI9841 SDK S Class 3

41

ERROR MESSAGES:

<EC>error message</EC>

If OPOS doesn’t find a new job (=horizontal line) it will return following error message:

<EC>Unable to sense OPOS XY correction line.</EC>

All these messages will be followed by a general OPOS Barcode error:

<EC>Unable to sense OPOS Barcode.</EC>

e.g: if the checksum is incorrect following is returned:

<EC>Checksum failed!</EC><EC>Unable to sense OPOS Barcode.</EC>

Other OPOS messages are:

<EC>Media not loaded!</EC>

<EC>Loading OPOS cancelled.</EC>

<EC>At least 2 markers must be sensed.</EC>

<EC>Unable to sense OPOS XY correction line.</EC>

<EC>The origin is not defined correctly!</EC>

MI9841 SDK S Class 3

42

5 Cutting Through.

5.1 Introduction.

Cutting material completely through on a drum-plotter is not an easy thing to do. It should be avoided

that cut pieces fall out while proceeding the job because this causes material crashes. In order to avoid

these crashes Summa implemented ‘FlexCut’ more than 10 years ago. An interrupted cutting line makes

sure that the material remains together thanks to the small media ‘bridges’. When the job is finished the

cut pieces can be torn out.

Although FlexCut helps a lot, it still has several limitations. Often, it is difficult to find the correct balance

between cutting deep enough making sure the pieces can be taken out easily, and not cutting too deep

making sure the material keeps it strength while cutting. Sometimes this balance doesn’t exist meaning

that this material can’t be cut.

On the latest Summa models new functionality has been implemented. A single tool-command activates

FlexCut, panelling and intelligent vector optimization routines. This way more materials can be cut-

through reliably.

5.2 FlexCut

When FlexCut is activated on the Summa cutter. The cutting line will become an interrupted line. The

different lengths and pressures of the cut line can be set with encapsulated commands. Activating

FlexCut can be done with encapsulated commands but doing this is normally not done (see important

note below).

Illustration 5.1 - FlexCut

Full Pressure

Cutting Length Flex Length

Flex Pressure

Media

Note: It is not recommended to use encapsulated commands to activate FlexCut.

Use instead the tool 6 and 10 as explained in next paragraph, the use of tools

activates extra useful features. Also encapsulated commands in the middle of cut

data mess up other cutter functions like recut and panelling.

MI9841 SDK S Class 3

43

5.3 Tool 6 & Tool 10

When activating tool 6 or tool 10, the S Class 3 cutter will combine the FlexCut with panelling and

optimization routines. Tool 10 uses only the automatic panelling, not the extra optimization routines.

The flex panel size can be set with encapsulated commands (see 3.1.22 FLEX_PANEL_SIZE = [a number

in the range 1 to 250]).

It is important that all objects that will be cut with this tool are grouped together at the end of the

cutting data.

Only lines to cut through:

;:ECN A P6 U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 e

First using default settings and then cutting through:

;:ECN A U 102 102 D 1835 102 1835 1717 102 1717 102 102 P6 U 2 2 D 1935 2 1935

1817 2 1817 2 2 U 1935 1000 e

In combination with OPOS:

<ESC>;@:

SET SPECIAL_LOAD OPOS

SET MARKER_X_SIZE 80.

SET MARKER_Y_SIZE 80.

SET MARKER_X_DIS 4400.

SET MARKER_Y_DIS 3920.

SET MARKER_X_N 2.

LOAD_MARKERS.

END.

;:ECN A U 102 102 D 1835 102 1835 1717 102 1717 102 102 P6 U 2 2 D 1935 2 1935

1817 2 1817 2 2 U 1935 1000 e

MI9841 SDK S Class 3

44

5.4 Guidelines

The settings for cutting through depend mainly on the material but also on the type of cutting head

(drag / tangential) and the wear of the knife. In order to cut through a standard vinyl following settings

should be a good start (feel free to use other settings).

Cutting Length : 10mm

Flex Length : 1 mm

Full pressure: 250gr

In order to avoid high knife wear and damage to the cutting strip, full pressure may not be too high.

Machine operator should also make sure the knife depth is set accordingly.

Flex pressure: 80-130gr

Vary this parameter in order to get an acceptable FlexCut line.

Flex panel size: 5-10cm (on more difficult materials like paper it may be recommend to reduce the flex

panel size to 2cm)

<ESC>;@:

SET FLEX_PANEL_SIZE = 5.

END.

;:ECN A P6 U 2 2 D 1935 2 1935 1817 2 1817 2 2 U 1935 1000 e

Note: Be careful when sending parameters to the cutter with every job. In some

cases the operator may have calibrated the cutter correctly not knowing that the

software will overrule his settings! Summa recommends that the operator can

choose in the software if parameters are sent or not.

The cutting through functionality is focused to cut convex polygons. However it will process any data it

receives in this mode. But it is obvious that the more complex the shape is, the more difficult it will be

to get an acceptable result.

When cutting through, it is recommended that parallel lines are at least 1 cm away from each other.

Otherwise, while cutting the second line, the first line may come loose and cause trouble.

In case the cutter is not capable of cutting the material in one pass. It is possible to cut each cutline

several times (see 3.1.24 MULTIPASS = [a number in the range 1 to 7]).

Note: Do not send encapsulated commands once actual cutdata has been send

Doing so interferes with features like recut, panelling and FlexCut.

MI9841 SDK S Class 3

45

6 TCP/IP

6.1 Introduction

In order to talk to a Summa cutter through Ethernet of WiFi you need to implement a TCP/IP protocol.

Besides the IP address, you also need to write or read to/from a certain port. For the S Class 3 cutter

this is set fixed to port 9100. The IP address can be set to any IP address.

Recommendations when using TCP/IP communication

When polling for the media size, build in a time-out of 10 seconds, it may take a couple of seconds

before the cutter reacts with the media size.

On some operating systems care must be taken when closing a socket. Closing the socket too soon may

result in data not being sent to the cutter. e.g. windows will not send the last chunk of data for large

files. Windows calls this ‘closing a socket gracefully’. Example code below shows how to implement a

graceful close in socket communication for windows applications.

6.2 Description by MSDN on graceful close.

To assure that all data is sent and received on a connected socket before it is closed, an application

should use shutdown to close connection before calling closesocket. One method to wait for notification

that the remote end has sent all its data and initiated a graceful disconnect uses the

WSAEventSelect function as follows :

1. Call WSAEventSelect to register for FD_CLOSE notification.

2. Call shutdown with how=SD_SEND.

3. When FD_CLOSE received, call the recv or WSARecv until the function completes with success

and indicates that zero bytes were received. If SOCKET_ERROR is returned, then the graceful

disconnect is not possible.

4. Call closesocket.

If this cannot be implemented then a trick can be used to prevent losing the last chunk of data, by

adding a delay of 3 - 4 seconds before closing the socket. No guaranty can be given that all data will

have been sent to the cutter.

Also do not close and open the socket all the time, leave it opened until all data is sent.

Recommended implementation

Through this example code, the following general handle is used for the client socket.

SOCKET ConnectSocket = INVALID_SOCKET;

You have to include following header to support sockets.

#include <Winsock2.h>

Your project should be linked to the ws2_32.lib to support the code shown below.

#pragma comment(lib, "ws2_32.lib")

Opening a socket

int iResult;

WSADATA wsaData;

struct sockaddr_in clientService;

http://msdn.microsoft.com/en-us/library/windows/desktop/ms737582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741576(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740121(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms741688(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms737582(v=vs.85).aspx

MI9841 SDK S Class 3

46

// Initialize Winsock

iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

if (iResult != NO_ERROR) {

// wprintf(L"WSAStartup failed with error: %d\n", iResult);

ConnectSocket = INVALID_SOCKET;

return;

}

// Create a SOCKET for connecting to server

ConnectSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (ConnectSocket == INVALID_SOCKET) {

// wprintf(L"socket failed with error: %ld\n", WSAGetLastError());

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

// The sockaddr_in structure specifies the address family, IP address, and port of

clientService.sin_family = AF_INET;

clientService.sin_addr.s_addr = inet_addr(AnsiString(this->edHost->Text).c_str());

clientService.sin_port = htons(this->edPort->Text.ToInt());

// Connect to server.

iResult = connect(ConnectSocket, (SOCKADDR*) &clientService, sizeof(clientService));

if (iResult == SOCKET_ERROR) {

// wprintf(L"connect failed with error: %d\n", WSAGetLastError());

closesocket(ConnectSocket);

WSACleanup();

ConnectSocket = INVALID_SOCKET;

return;

}

Put socket in Blocking-mode

TCP/IP sockets are default set to blocking mode. To be sure you can use the code below to setup sockets

in blocking-mode.

// Set the socket I/O mode: In this case FIONBIO enables or disables the blocking mode for the socket

// If iMode = 0, blocking is enabled;

// If iMode != 0, non-blocking mode is enabled.

iMode = 0;

iResult = ioctlsocket(ConnectSocket, FIONBIO, &iMode);

if (iResult == SOCKET_ERROR) {

// printf("ioctlsocket failed with error: %ld\n", iResult);

}

Set send timeout

When using sockets in blocking mode, you should set a timeout for sending data, to avoid the main

program from freezing.

MI9841 SDK S Class 3

47

// Set send timeout.

iOptVal = 10000;

iResult = setsockopt(ConnectSocket, SOL_SOCKET, SO_SNDTIMEO, (char *) &iOptVal, iOptLen);

if (iResult == SOCKET_ERROR) {

// wprintf(L"setsockopt for SO_SNDTIMEO failed with error: %u\n", WSAGetLastError());

 closesocket(ConnectSocket);

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

For sending encapsulated data, this is no problem.

But for the cutting data you should keep sending data, for example when the Cutter is offline, and not

processing any data anymore. You can achieve this in 2 ways:

• Send the file in a different thread than the main thread and setting iOptVal = 0.

• Send the file in the main thread, setting iOptVal = 10000, and retry each time. Decrease the

delay to make you main program more responsive.

Set receive timeout

When using sockets in blocking mode, you should set a timeout for receiving data, to avoid the main

program from freezing.

// Set receive timeout.

iOptVal = 500;

iResult = setsockopt(ConnectSocket, SOL_SOCKET, SO_RCVTIMEO, (char *) &iOptVal, iOptLen);

if (iResult == SOCKET_ERROR) {

// wprintf(L"setsockopt for SO_SNDTIMEO failed with error: %u\n", WSAGetLastError());

 closesocket(ConnectSocket);

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

MI9841 SDK S Class 3

48

Closing the socket

int iResult;

WSAEVENT NewEvent;

long events;

WSANETWORKEVENTS wsaevents;

// shutdown the connection since no more data will be sent

iResult = shutdown(ConnectSocket, SD_SEND);

if (iResult == SOCKET_ERROR) {

// wprintf(L"close failed with error: %d\n", WSAGetLastError());

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

// wait for other side to close the socket

NewEvent = WSACreateEvent();

WSAEventSelect(ConnectSocket, NewEvent, FD_CLOSE);

do

{

 WaitForSingleObject(NewEvent, 50);

 WSAEnumNetworkEvents(ConnectSocket, NewEvent, &wsaevents);

 events = wsaevents.lNetworkEvents;

} while (!(events & FD_CLOSE));

// cleanup

iResult = closesocket(ConnectSocket);

if (iResult == SOCKET_ERROR) {

// wprintf(L"close failed with error: %d\n", WSAGetLastError());

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

WSACleanup();

ConnectSocket = INVALID_SOCKET;

Sending data

When send succeeds it returns the number of bytes it has sent. To send files we split up the data in

packets of 1024 bytes.

iResult = send(ConnectSocket, buffer,sizeof(buffer), 0);

if (iResult == SOCKET_ERROR) {

// wprintf(L"send failed with error: %d\n", WSAGetLastError());

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

MI9841 SDK S Class 3

49

Receiving data

iResult = recv(ConnectSocket, ReadBuffer, 1500, 0);

if (iResult == SOCKET_ERROR) {

// wprintf(L"recv failed with error: %d\n", WSAGetLastError());

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

6.3 Discovering Ethernet devices

The S Class 3 cutter support discovery on a local network using broadcast messages. This is again done by

using the Winsock2 library.

Broadcasting must be done through the UDP protocol, so you will need to create an UDP socket.

• Message to send: PingForSumma

• Received message:

MODEL_NAME;SERIAL NUMBER;IP ADRES

e.g.S3T75;T12302-10001;246.124.250.100

• Port to use: 9000

CODE SAMPLE:

Using Winsock2

#include <Winsock2.h>

#include <string> // for using std::string

#pragma comment(lib, "ws2_32.lib")

Setting the message to send

std::string sMsg = “PingForSummaS2”;

Setting the ethernet port

USHORT ushPort = 9000;

Creating and opening the socket for UDP broadcasting

int iResult;

WSADATA wsaData;

SOCKET ConnectSocket = INVALID_SOCKET;

struct sockaddr_in clientService;

// Initialize Winsock

iResult = WSAStartup(MAKEWORD(2,2), &wsaData);

if (iResult != NO_ERROR)

{

ConnectSocket = INVALID_SOCKET;

 return;

}

// Create a SOCKET for connecting to broadcast

MI9841 SDK S Class 3

50

ConnectSocket = socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (ConnectSocket == INVALID_SOCKET)

{

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

// The sockaddr_in structure specifies the address family,

// IP address, and port

clientService.sin_family = AF_INET;

clientService.sin_addr.s_addr = htonl(INADDR_ANY);

clientService.sin_port = htons(ushPort);

// Bind the socket to any address and the port

iResult = bind(ConnectSocket, (SOCKADDR*) &sockAddr, sizeof(sockAddr));

if (iResult != 0)

{

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

// Enable broadcast

bool bOptVal = true;

iResult = setsockopt(ConnectSocket, SOL_SOCKET, SO_BROADCAST, (char *) &bOptVal, sizeof

(bOptVal));

if (iResult == SOCKET_ERROR)

{

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

// Set receive timeout (here set to 600ms)

iOptVal = 600;

iResult = setsockopt(ConnectSocket, SOL_SOCKET, SO_RCVTIMEO, (char *) &iOptVal, sizeof(iOptVal));

if (iResult == SOCKET_ERROR)

{

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

Sending the broadcast message

// Local variables

int iResult;

const int BufLen = 512;

int iLastErr;

MI9841 SDK S Class 3

51

sockaddr_in raddr;

int rlen = sizeof (raddr);

// Clear ping info

this->vInfo.clear();

// The sockaddr_in structure specifies the address family,

// IP address, and port of the target socket

sockaddr_in sockAddr;

sockAddr.sin_family = AF_INET;

sockAddr.sin_addr.s_addr = htonl(INADDR_BROADCAST);

sockAddr.sin_port = htons(ushPort);

 // Send ping command

iResult = sendto(ConnectSocket, sMsg.c_str(),sMsg.size(), 0, (SOCKADDR *) &sockAddr,

sizeof(sockAddr));

if (iResult == SOCKET_ERROR)

{

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

Receiving data

// Read buffer

char ReadBuffer[512];

// Wait time

const clock_t MAX_PING_WAIT_TIME = 600;

// Read data

clock_t starttime = clock();

clock_t time;

do

{

 iResult = recvfrom(ConnectSocket, ReadBuffer, BufLen, 0, (SOCKADDR*)&raddr, &rlen);

 if(iResult == SOCKET_ERROR)

 {

iLastErr = WSAGetLastError();

 if(iLastErr != WSAETIMEDOUT)

 {

 WSACleanup();

 ConnectSocket = INVALID_SOCKET;

 return;

}

 // Add NULL char to terminate data in read buffer for Summacut

 if(iResult > 0)

 ReadBuffer[iResult] = '\0';

MI9841 SDK S Class 3

52

// AT THIS POINT, YOU SHOULD PARSE THE DATA IN READBUFFER AS DESCRIBED BEFORE

 }

 Sleep(10);

 time = clock() - starttime;

}

while(time < MAX_PING_WAIT_TIME);

Disconnecting the socket

ConnectSocket = INVALID_SOCKET

WSACleanUp();

MI9841 SDK S Class 3

53

7 USB

7.1 Introduction

This document describes the basics to communicate with the USB bus on the cutters from Summa, this

for the windows operating system.

First some basics about the USB bus and the support of windows for this bus are described.

Then the specific details of the software-architecture for communication with the cutters are described.

The document ends with a sample written in C that clarifies the theory.

Note: The explanation is done for 32 bit applications, For 64 bit applications it is

completely the same providing you use the 64 bit DLL and drivers.

7.2 USB and Windows

USB is a standard bus available on all PC’s. This bus offers serial communication at high speed. It is hot

pluggable, which means devices can be attached or removed at any time from the PC.

The Win32 API (or let say Windows) offers some functions to communicate. These functions are

CreateFile(), ReadFile(), WriteFile() and CloseHandle().

More info about these functions can be found in your development tools (Visual C++ or Borland C++

or MSDN). The term ‘file’ also includes communications resources such as the USB port.

The CreateFile() is used to get a handle to a file or communication resource. The WriteFile() is

then used to send data to the opened ‘file’. The CreateFile() function can NOT be used directly with

the USB bus. Instead a function (open_file()) provided by Summa must be used. This function does

the same as CreateFile(); it returns a handle to the USB bus for the cutter. Then the WriteFile()

and ReadFile() functions can be used.

7.2.1 USB Pipes

Each USB device (in our case the cutter) communicates to the host software (= software on PC) through

what is called pipes. Most USB devices do have several pipes implemented. The cutter has 3 pipes

implemented. This means that there are 3 communications channels between the cutter and the host

software.

The two most important pipes are PIPE00 and PIPE01. PIPE01 is an unidirectional pipe that

transports data from the host PC to the cutter. This data is the cut data (DM/PL or HP-GL). PIPE00 is

also unidirectional and carries information from the cutter to the host. For example you can get the size

of the media through this pipe (in DM/PL for example).

Sending data has to be handled over PIPE01 and receiving data will be handled over PIPE00. Each

pipe will need a different handle.

As an example to get the media size of the cutter (in DM/PL) you will have to send ;: ER on PIPE01

and you will have to read the response on PIPE00.

MI9841 SDK S Class 3

54

7.3 Win32 Software Components

Summa has written a windows driver (SummaUsb.sys) that allows Windows programs to communicate

with the cutter over the USB bus with the standard Win32 API functions ReadFile(), WriteFile()

and CloseHandle().

Before using this functions, you must get a handle to the USB cutter device. For this use ‘open_file()’,

a function that Summa has written. This function is made available through the SummaUsb.dll. (see the

sample in section 7.5 on how to use the DLL).

You must use the WriteFile() and ReadFile() functions to communicate over the USB bus.

Illustration 7.1 - The different USB software parts

CUTTER

USB Bus

SUMMAUSB.SYS

Win 32 Host

Application

SummaUsb.dll

To get handle for

WriteFile and ReadFile

WriteFile via Pipe01

LoadLibrary/

GetProcAddress

CreateFile

ReadFile via Pipe00

PIPE01 PIPE00

MI9841 SDK S Class 3

55

7.3.1 SummaUsb.sys

The Plug and play Manager from windows automatically load this WDM driver when it detects that a

cutter has been plugged into the USB bus. This driver a be downloaded from the Summa website.

Note: The USB bus allows hot plugging and unplugging of the devices attached to its

bus. The cutter may be plugged in after your program has started. You will not get a

handle when the cutter is not plugged in or is powered off. You will only get a handle

to the device after the cutter is powered on and plugged in the USB bus.

Get a handle to the USB device just before sending/receiving data. It is preferred not to get a handle at

initialization of your program.

7.3.2 SummaUsb.dll

SummaUsb.dll is a dynamic link library that helps you to get an easy access to the handles of the USB

pipes from the cutter. You can get 2 handles to the cutter, one for each pipe. After you have a handle to

the USB cutter, you don’t need SummaUsb.dll anymore. You can use the standard win32 API functions

ReadFile() and WriteFile() to communicate with the cutter.

You will have to include this file with the installation of your product!

This DLL has 4 functions called open_file(), open_file2(), open_file3() and

open_file4() that does the same as CreateFile():

One function for each of the 4 available USB ports. The USB port number can be set through the control

panel of the cutter.

HANDLE __stdcall open_file (char* lpFileName, DWORD dwFlagsAndAttributes);

HANDLE __stdcall open_file2 (char* lpFileName, DWORD dwFlagsAndAttributes);

HANDLE __stdcall open_file3 (char* lpFileName, DWORD dwFlagsAndAttributes);

HANDLE __stdcall open_file4 (char* lpFileName, DWORD dwFlagsAndAttributes);

Parameters

lpFileName

Points to a string that specifies the name of the pipe. The only valid values for that parameter are the

strings “PIPE00” and “PIPE01”. “PIPE00” to read data from the cutter and “PIPE01” to write data to

the cutter.

dwFlagsAndAttributes

Instructs the system whether or not to use asynchronous communication. See information about

CreateFile().

Values: 0(NULL) for synchronous operation or FILE_FLAG_OVERLAPPED for asynchronous operation.

MI9841 SDK S Class 3

56

Illustration 7.2 - Using multiple USB cutter devices

Return Values

If the function succeeds, the return value is an open handle to the specified pipe. If the function fails,

the return value is INVALID_HANDLE_VALUE. To get extended error information, call

GetLastError(). The pipe cannot be opened when the cutter is powered off or when the cutter is not

connected to the USB bus.

Note: This function must be declared as __stdcall.

WriteFile() and ReadFile() can then use the handle returned by open_file().

7.3.3 Win32 Host Application

There are some restrictions on the Win32 API functions ReadFile() and WriteFile().

Writing Data To Cutter.

You must send the data in little packets (e.g. 256 bytes). This gives much better performance. When

sending a file of 1 MB, for instance, the USB driver stack will take up too much time and your

computer will seem to hang. When sending little chunks it is also easier to cancel a current job being

sent.

When the data is split in packets of 256 bytes, the last packet will probably be smaller than 256 bytes,

this is no problem.

If the input buffer of the cutter is full, the WriteFile() function will not return, but it will wait until

some place in the buffer is available.

MI9841 SDK S Class 3

57

Reading Data From Cutter.

The timeout principle doesn’t exists on the USB bus, at least not in the same way as in the serial port.

So when querying info from the cutter, you normally first send data on PIPE01 and then read data on

PIPE00. The cutter needs some time to put data on the USB bus after receiving the request. While the

data is not ready the cutter will respond to any query with a zero length packet. This means the

ReadFile() function will return with 0 bytes read. You will have to call ReadFile() until you get the

desired response from the cutter. Calling ReadFile() only once will not be enough, the cutter needs

in most cases to have 2 ReadFile() commands, the first one will respond with 0 bytes, the second

one with the desired response (if the cutter is ready to answer).

So when getting an answer from the cutter of zero bytes or less than expected, it does not mean that

no data is available anymore. The cutter needs some time to put the data in its output buffer. It is

recommended to keep reading until the expected answer is received.

Reading data must be done by multiples of 16. Do not read 1 byte at a time with the ReadFile()

function! When reading more data than available, the ReadFile() will return with success, but the

number of bytes read will be set to what is really read.

7.4 Summary

• Make a 32-bit program (Win32) using ReadFile() and WriteFile() to communicate.

• Load the DLL SummaUsb.dll using LoadLibrary().

• Get the address of the function open_file() using GetProcAddress().

• Use open_file() from SummaUsb.dll to get a handle to the USB port instead of CreateFile().

• Open 2 handles, one for reading data and one for writing data.

• Send data in little chunks (e.g. 256 bytes) with WriteFile().

• Read data in multiples of 16 bytes with ReadFile().

• When reading data the cutter may respond with 0 bytes. Make sure to keep reading until the

expected answer is received before deciding the cutter doesn’t respond.

• USB has no time-out function.

7.5 Win32 Sample Application

The sample is compiled using Visual C++ 5.0. The sample is a win 32 console application (runs in a

‘DOS’ box). Files are distributed together with this document. The RWSumma.c file gives an example on

how to open handles to the USB pipes and how to send and read data. The sample also shows how to

use SummaUSb.dll and its function “open_file()”.

The method used in this sample is the so-called Run-Time Dynamic Linking. It has the advantage that

the process can continue running even if the DLL is not available. The program can then notify the user

of an error. If the user can provide the full path of the missing DLL, the process can use this information

to load the DLL even though it is not in the normal search path.

This sample does not allow to cancel data or stop the execution of the ReadFile() or WriteFile()

function. It has no time-out function implemented.

/*++

Copyright (c) 1999 Summa N.V.

Module Name:

 RWSumma.c

MI9841 SDK S Class 3

58

Abstract:

 Console test app for SummaUsb.sys driver

Environment:

 user mode only

Notes:

 Copyright (c) 1999 Summa N.V. All Rights Reserved.

Revision History:

 11/11/99: created

--*/

#include <windows.h>

#include <conio.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#include <time.h>

#include <sys\timeb.h>

#include <basetyps.h>

char inPipe[32] = "PIPE00"; // pipe name for bulk input pipe on our test

board

char outPipe[32] = "PIPE01"; // pipe name for bulk output pipe on our test

board

int gDebugLevel = 1; // higher == more verbose, default is 1, 0 turns

off all

int WriteLen = 0; // #bytes to write

int ReadLen = 0; // #bytes to read

// prototype for open_file function from summausb.dll

typedef HANDLE (__stdcall *OPENFILE)(char*, DWORD);

OPENFILE POpenFile;

// functions

/*++

Routine Description:

 waits for a time ms (in milliseconds)

Arguments:

 ms : time to wait in milliseconds

Return Value:

 Zero

--*/

void delayms(double ms)

{

 double elapsed_time = 0;

 struct _timeb start, finish;

 _ftime(&start);

 _ftime(&finish);

 do

 {

 _ftime(&finish);

 elapsed_time = ((finish.time - start.time) * 1000) + finish.millitm

 - start.millitm;

 } while (elapsed_time < ms);

}

int _cdecl main(

MI9841 SDK S Class 3

59

 int argc,

 char *argv[])

/*++

Routine Description:

 Entry point to RWsumma.exe

 Sends data to the USB cutter and reads response.

Arguments:

 argc, argv standard console 'c' app arguments

Return Value:

 Zero

--*/

{

 char *pinBuf = NULL, *poutBuf = NULL;

 int nBytesRead, nBytesWrite,TotalBytesRead;

 ULONG i;

 UINT success;

 HANDLE hRead = INVALID_HANDLE_VALUE, hWrite = INVALID_HANDLE_VALUE;

 ULONG totalBytes = 0L;

 char DebugString2[] = " \x1B;@:.MENU. ";

 char DebugString[] = ";: EC1 ER ";

 UINT bResult = 0;

 HINSTANCE hinstLib;

 BOOL fRunTimeLinkSuccess = FALSE;

 // First the SummaUsb Dll will be loaded

 // then we will get the adress of the function needed in the dll

 // Get a handle to the DLL module.

 hinstLib = LoadLibrary("summausb.dll");

 // If the handle is valid, try to get the function address.

 if (hinstLib != NULL)

 {

 POpenFile = (OPENFILE) GetProcAddress(hinstLib, "open_file");

 // If the function address is invalid, print a error message

 fRunTimeLinkSuccess = (POpenFile != NULL);

 // If unable to call the DLL function, DLL must be corrupted?

 if (! fRunTimeLinkSuccess)

 printf("Error : could not open function OpenFile");

 }

 else

 {

 printf("Error : could not open Summausb.dll\n");

 return (1);

 }

 //

 // open the Read and Write Pipes

 //

 hWrite = (POpenFile)(outPipe, (DWORD)NULL);

 if (hWrite == INVALID_HANDLE_VALUE)

 {

 printf("could not open %s", outPipe);

MI9841 SDK S Class 3

60

 return 0;

 }

 hRead = (POpenFile)(inPipe, (DWORD)NULL);

 if (hRead == INVALID_HANDLE_VALUE)

 {

 printf("could not open %s", inPipe);

 return 0;

 }

 //

 // put some data in the output buffer

 //

 WriteLen = sizeof(DebugString);

 poutBuf = malloc(WriteLen);

 sprintf(poutBuf, DebugString);

 // allocates some memory to put read data.

 ReadLen = 64;

 pinBuf = malloc(ReadLen + 1);

 if (poutBuf && hWrite != INVALID_HANDLE_VALUE)

 {

 // skip any data that is still left in the buffer of the cutter

 // by reading data from the cutter, until no more data is available

 do

 {

 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead, NULL);

 delayms(10);

 /* add some kind of timeout or abort procedure ? */

 } while (nBytesRead);

 //

 // send data to the cutter

 //

 WriteFile(hWrite, poutBuf, WriteLen, &nBytesWrite, NULL);

 printf("<%s> W (%04.4d) : request %06.6d bytes -- %06.6d byte\n",

 outPipe, i, WriteLen, nBytesWrite);

 }

 if (pinBuf)

 {

 nBytesRead =0;

 /* read untill we get some answer from the cutter */

 /* the cutter will return nBytesRead = 0 as long as no data is

available*/

 while (!nBytesRead)

 {

 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead, NULL);

 /* add some kind of timeout or abort procedure ? */

 }

 // we have some data, process it

 pinBuf[nBytesRead] = 0;

MI9841 SDK S Class 3

61

 printf(pinBuf);

 printf("\n\r");

 delayms(20); // add some delay to allow the cutter to prepare

its next data

 TotalBytesRead = nBytesRead;

 /*if more data needed read, read more data,

 The cutter will return 0 bytes, while it is preparing its data !!

 */

 while (nBytesRead)

 {

 success = ReadFile(hRead, pinBuf, ReadLen, &nBytesRead, NULL);

 TotalBytesRead += nBytesRead;

 pinBuf[nBytesRead]=0;

 printf(pinBuf);

 delayms(20);

 }

 printf("\n<%s> R (%04.4d) : %06.6d bytes read\n", inPipe, i,

 TotalBytesRead);

 }

 if (pinBuf)

 {

 free(pinBuf);

 }

 if (poutBuf)

 {

 free (poutBuf);

 }

 // close devices if needed

 if (hRead != INVALID_HANDLE_VALUE)

 CloseHandle(hRead);

 If (hWrite != INVALID_HANDLE_VALUE)

 CloseHandle(hWrite);

 // free the dll Library

 if (hinstLib)

 FreeLibrary(hinstLib);

 return 0;

}

MI9841 SDK S Class 3

62

7.6 Handshake Sample

The following application shows how to implement a handshaking method. It also uses the Run-Time

Dynamic Linking method.

The program starts with creating a handle fp to the file specified in the command-line argument

argv[1]. It then loads the library SummaUSB.dll and stores the handle in hLib. This handle is then

used to retrieve the address of the function open_file to get a handle to an USB-pipe. This address

pOpenFile is then used to get a handle to the USB output-pipe hWrite and status-pipe hStatus.

Now we are ready to transmit the data to the cutter.

First, we check if we’re not at the end of a file, then we read a chunk of data (up to 256 bytes). If we

could get the data, we have to check if there is space for it in the cutter’s buffer. This is accomplished

by reading form the USB status-pipe hStatus with the ReadFile() function. The data szBuffer

returned represents the free space in the cutter’s internal buffer. The converted value nBufferFree is

compared against the amount of data iCount we’ve previously read. When there’s not enough space

for the data, we enter a loop until space becomes available. As soon as there’s enough space for the

data, we can send it to the cutter using the WriteFile() function with a handle to the USB output-

pipe hWrite.

All this is repeated until all data has been sent to the cutter.

Next, all handles are closed and the Summa USB library hLib is unloaded.

// File2USB.cpp : Defines the entry point for the console application.

#include <windows.h>

#include <stdlib.h>

#include <stdio.h>

char inPipe[32] = ”PIPE00” ; // pipe to read responces from the cutter

char outPipe[32] = ”PIPE01” ; // pipe to send data to the cutter

char statusPipe[32] = ”PIPE02” ; // pipe to query free space in the cutter’s

internal buffer

// prototype for open_file function from summausb.dll

typedef HANDLE (__stdcall * OPENFILE)(char *, DWORD) ;

OPENFILE pOpenFile ; // pointer to the open_file function

int main(int argc, char* argv[])

{

 FILE *fp ;

 HMODULE hLib ; // The SummaUSB library handle

 HANDLE hWrite ; // A handle to the USB output pipe

 HANDLE hStatus ; // A handle to the USB status pipe

 char szData[256] ; // The data buffer

 unsigned int iCount ; // Amount of data we’ve read

 char szBuffer[16] ;

 unsigned long n ;

 unsigned long nBufferFree ; // Free space in the cutter’s internal buffer

 BOOL bSuccess ;

 // A filename is required

 if (argc != 2)

 {

 printf(”Usage : File2USB <filename>\n”);

 return 1 ;

 }

 // Open the specified file

MI9841 SDK S Class 3

63

 fp = fopen(argv[1], ”rb”) ;

 if (fp == NULL)

 {

 printf(”Error: could not open file \”%s\”\n”, argv[1]) ;

 return 2 ;

 }

 // Load the library which connects our app to the USB driver

 hLib = LoadLibrary(”SummaUSB.dll”) ;

 if (hLib == NULL)

 {

 fclose(fp) ;

 printf(”Error: could not open SummaUSB.dll\n”) ;

 return 3 ;

 }

 // Get the address of the function which gives us a handle to the specified pipe

 pOpenFile = (OPENFILE)GetProcAddress(hLib, ”open_file”) ;

 if (pOpenFile == NULL)

 {

 fclose(fp) ;

 printf(”Error: could not retrieve address of open_file function\n”,

outPipe) ;

 return 4 ;

 }

 // Get a handle to the pipe where whe can put our data

 hWrite = (pOpenFile)(outPipe, 0) ;

 if (hWrite == INVALID_HANDLE_VALUE)

 {

 fclose(fp) ;

 printf(”Error: could not open pipe \”%s\”\n”, outPipe) ;

 return 5 ;

 }

 // Get a handle to the pipe where whe can read the free space in the cutter’s

internal buffer

 hStatus = (pOpenFile)(statusPipe, 0) ;

 if (hStatus == INVALID_HANDLE_VALUE)

 {

 fclose(fp) ;

 printf(”Error: could not open pipe \”%s\”\n”, statusPipe) ;

 return 6 ;

 }

 bSuccess = TRUE ;

 // Repeat until no more data available or when there are problems on the USB port

 while (!feof(fp) && bSuccess)

 {

 // Get some data to send

 iCount = fread(szData, sizeof(char), sizeof(szData), fp) ;

 // If there is something to send

 if (iCount > 0)

 {

 // Use software handshaking

MI9841 SDK S Class 3

64

 do

 {

 // Read data from USB status pipe

 bSuccess = ReadFile(hStatus, szBuffer, sizeof(szBuffer), &n,

0) ;

 szBuffer[n] = 0 ; // Terminate string

 nBufferFree = atol(szBuffer) ; // Free space in internal buffer

of the cutter

 } while (bSuccess && nBufferFree < iCount) ; // Repeat until space

becomes available

 // Send the data through the USB output pipe

 bSuccess = WriteFile(hWrite, szData, iCount, &n, 0) ;

 }

 } ;

 CloseHandle(hStatus) ;

 CloseHandle(hWrite) ;

 fclose(fp) ;

 // Release the SummaUSB library

 FreeLibrary(hLib) ;

 return 0;

}

MI9841 SDK S Class 3

65

8 Appendix

8.1 Maximum Pressure and Speed by Model

The maximum tool-pressure, speed and media width depends on the cutter-model, and is summarized

in the following table.

Table 8.1 - Maximum Pressure And Speed By Model

Device Max. Pressure Max. Speed Max Cutting Width

S3D75 400 gr. 1000 mm/s 742 mm

S3D120 400 gr. 1000 mm/s 1200 mm

S3D140 400 gr. 1000 mm/s 1350 mm

S3D160 400 gr. 1000 mm/s 1580 mm

S3T75 1000 gr. 1000 mm/s 742 mm

S3T120 1000 gr. 1000 mm/s 1200 mm

S3T140 1000 gr. 1000 mm/s 1350 mm

S3T160 1000 gr. 1000 mm/s 1580 mm

S3TC75 1000 gr. 1000 mm/s 742 mm

S3TC160 1000 gr. 1000 mm/s 1580 mm

	1 Introduction
	2 Cutter Commands
	2.1 DM/PL Language Basics
	1
	2.1.1 Introduction
	2.1.2 The ;: Select Command
	2.1.3 The ECx Coordinate Addressing Command
	2.1.4 The A Absolute Addressing Command
	2.1.5 The R Relative Addressing Command
	2.1.6 The D Down Command
	2.1.7 The U Up Command
	2.1.8 The x,y Vector Move Command
	2.1.9 The e End Of Plot Command
	2.1.10 The ce Cut-off with End Of Plot Command
	2.1.11 The @ Deselect Command
	2.1.12 The BPn Tool Pressure Command
	2.1.13 The BOn Overcut Command
	2.1.14 The BMn Multipass Command
	2.1.15 The Fn Frame Command
	2.1.16 The Px Tool Select Command
	2.1.17 The Vn Velocity Command
	2.1.18 The ER Report Command
	2.1.19 The EWx Job Length Command
	2.1.20 Sample DM-PL File

	2.2 HP-GL Language Basics
	2.2.1 The IN; Initialize Command
	2.2.2 The BP; Begin Plot Command
	2.2.3 The PAx,y; Absolute Addressing Command
	2.2.4 The PRx,y; Relative Addressing Command
	2.2.5 The PDx,y; Down Command
	2.2.6 The PUx,y; Up Command
	2.2.7 The VSn; Velocity Command
	2.2.8 The SPn; Tool Select Command
	2.2.9 The FSn; Force Select Command
	2.2.10 The OVn; Overcut Command
	2.2.11 The MPn; Multipass Command
	2.2.12 The OH; Output Hardclip Command
	2.2.13 The PG; End Of Plot Command
	2.2.14 The EC; Enable Cut-off Command
	2.2.15 The EWx; Job Length Command
	2.2.16 Sample HP-GL File

	3 Encapsulated Language
	3.1 Changing Parameters Settings Commands
	3.1.1 MARKER_X_DIS = [a number in the range 1200 to 52000]
	3.1.2 MARKER_Y_DIS = [a number in the range 1200 to 64000]
	3.1.3 MARKER_X_SIZE = [a number in the range 80 to 400]
	3.1.4 MARKER_Y_SIZE = [a number in the range 80 to 400]
	3.1.5 MARKER_X_N = [a number in the range 2 to 128]
	3.1.6 SPECIAL _LOAD = [OPOS,OPOS_XY,OPOS_XY2,OPOS_XTRA]
	3.1.7 SHEET_MODE = [OFF,ON]
	3.1.8 PANELLING = [OFF,ON]
	3.1.9 PANELLING_SIZE = [a number in the range 1 to 250]
	3.1.10 RECUT_OFFSET = [a number in the range 0 to 4000]
	3.1.11 CUTMEDIA_OFFSET = [a number in the range 0 to 250]
	3.1.12 VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000]
	3.1.13 OVERCUT = [a number in the range 0 to 10]
	3.1.14 OPTICUT = [ON,OFF]
	3.1.15 TOOL = […]
	3.1.16 FLEX_CUT = [OFF,MODE1,MODE2]
	3.1.17 FULL_PRESSURE = [a number in the range 20 to 1000]
	3.1.18 CUT_LENGTH = [a number in the range 10 to 10000]
	3.1.19 FLEX_PRESSURE = [a number in the range 20 to 1000]
	3.1.20 FLEX_LENGTH = [a number in the range 10 to 10000]
	3.1.21 FLEX_VELOCITY = [50,100,200,300,400,500,600,700,800,900,1000,AUTO]
	3.1.22 FLEX_PANEL_SIZE = [a number in the range 1 to 250]
	3.1.23 SORTING_ENABLE = [OFF,ON,START_POINT]
	3.1.24 MULTIPASS = [a number in the range 1 to 7]

	3.2 Executive Commands
	3.2.1 SET_ORIGIN = X,Y.
	3.2.2 LOAD_MARKERS.
	3.2.3 RECUT = n.

	3.3 Response Commands
	3.3.1 MENU.
	3.3.2 MENU [item name].
	3.3.3 QUERY.

	3.4 Encapsulated File Example

	4 OPOS Outline Cutting
	4.1 Introduction
	4.2 Contour Cutting Problems
	4.3 The OPOS Alignment Method
	4.4 Registration marks
	4.4.1 Shape
	4.4.2 Size
	4.4.3 Position
	4.4.4 OPOS XY
	4.4.5 OPOS XY2
	4.4.6 OPOS XTRA
	4.4.7 OPOS BARCODE

	4.5 Data sent to the cutter
	4.5.1 OPOS Commands.
	4.5.2 Cutting Data
	4.5.3 Sample File

	4.6 Automating OPOS
	4.6.1 Introduction
	4.6.2 Identical jobs on a roll
	4.6.3 Different jobs on a roll
	4.6.4 Identical jobs on several sheets
	4.6.5 OPOS BARCODE

	5 Cutting Through.
	5.1 Introduction.
	5.2 FlexCut
	5.3 Tool 6 & Tool 10
	5.4 Guidelines

	6 TCP/IP
	6.1 Introduction
	6.2 Description by MSDN on graceful close.
	6.3 Discovering Ethernet devices

	7 USB
	7.1 Introduction
	7.2 USB and Windows
	7.2.1 USB Pipes

	7.3 Win32 Software Components
	7.3.1 SummaUsb.sys
	7.3.2 SummaUsb.dll
	7.3.3 Win32 Host Application

	7.4 Summary
	7.5 Win32 Sample Application
	7.6 Handshake Sample

	8 Appendix
	8.1 Maximum Pressure and Speed by Model

